Brownian dynamics: Its application to ionic solutions

The method of molecular dynamics is applied to a solvent‐averaged model of electrolyte solutions, described by a generalized Langevin equation. For Brownian motion without solute–solute interactions, we recover the characteristic features of an infinitely dilute solution. For interacting brownons, the results exhibit a noticeable dependence of the calculated self‐diffusion coefficients on the influence of the Coulomb forces. The model system exhibits ion association when the Coulomb forces are made strong enough.

[1]  W. Ebeling,et al.  Zur kinetischen Theorie schwach ionisierter Plasmen im Magnetfeld , 1963 .

[2]  W. Graham,et al.  ESR and optical spectra of C2− in various ion pairs trapped at 4°K in solid argon , 1974 .

[3]  H. Davis,et al.  On the Relaxation Effect in the Electrical Conductivity of Plasmas and Electrolytes , 1964 .

[4]  E. Cohen,et al.  Corrections to the Fuoss–Onsager Theory of Electrolytes , 1970 .

[5]  B. Quentrec,et al.  Application of the molecular dynamics method to a liquid system with long range forces (Molten NaCl) , 1974 .

[6]  Brownian dynamics for gaussian random sources , 1976 .

[7]  E. Teller,et al.  Monte Carlo Study of a One‐Component Plasma. I , 1966 .

[8]  B. Alder,et al.  Studies in Molecular Dynamics. II. Behavior of a Small Number of Elastic Spheres , 1960 .

[9]  K. Heinzinger,et al.  A Molecular Dynamics Study of Aqueous Solutions I. First Results for LiCl in H2O , 1974 .

[10]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[11]  I. R. Mcdonald,et al.  Statistical mechanics of dense ionized matter. IV. Density and charge fluctuations in a simple molten salt , 1975 .

[12]  Irwin Oppenheim,et al.  Molecular Theory of Brownian Motion for Several Particles , 1971 .

[13]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[14]  J. Barojas,et al.  Simulation of Diatomic Homonuclear Liquids , 1973 .

[15]  Werner Ebeling,et al.  Theorie der Elektrolyte , 1971 .

[16]  H. Friedman,et al.  Effects of Details of Dynamics on dc Transport Coefficients in Solution , 1969 .

[17]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[18]  J. H. Weiner,et al.  Rate theory for solids. IV. Classical Brownian-motion model , 1974 .

[19]  D. Ermak A computer simulation of charged particles in solution. I. Technique and equilibrium properties , 1975 .

[20]  H. Friedman On the Electrophoretic Term of the Limiting Law for Electrical Conductance in Solutions , 1965 .

[21]  W. G. McMillan,et al.  The Statistical Thermodynamics of Multicomponent Systems , 1945 .

[22]  F. Stillinger,et al.  General Restriction on the Distribution of Ions in Electrolytes , 1968 .

[23]  J. Justice Debye-Bjerrum treatment of dilute ionic solutions , 1975 .

[24]  Harold L. Friedman,et al.  Study of a Refined Model for Aqueous 1‐1 Electrolytes , 1971 .

[25]  B. B. Owen,et al.  The Physical Chemistry of Electrolytic Solutions , 1963 .