Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems

An algebraic multigrid algorithm for symmetric, positive definite linear systems is developed based on the concept of prolongation by smoothed aggregation. Coarse levels are generated automatically. We present a set of requirements motivated heuristically by a convergence theory. The algorithm then attempts to satisfy the requirements. Input to the method are the coefficient matrix and zero energy modes, which are determined from nodal coordinates and knowledge of the differential equation. Efficiency of the resulting algorithm is demonstrated by computational results on real world problems from solid elasticity, plate bending, and shells.ZusammenfassungEs wird ein algebraisches Mehrgitterverfahren für symmetrische, positiv definite Systeme vorgestellt, das auf dem Konzept der geglätteten Aggregation beruht. Die Grobgittergleichungen werden automatisch erzeugt. Wir stellen eine Reihe von Bedingungen auf, die aufgrund der Konvergenztheorie heuristisch motiviert sind. Der Algorithmus versucht diese Bedingungen zu erfüllen. Eingabe der Methode sind die Matrix-Koeffizienten und die Starrkörperbewegungen, die aus den Knotenwerten unter Kenntnis der Differentialgleichung bestimmt werden. Die Effizienz des entstehenden Algorithmus wird anhand numerischer Resultate für praktische Aufgaben aus den Bereichen Elastizität, Platten und Schalen demonstriert.

[1]  James H. Bramble,et al.  Multigrid methods for the biharmonic problem discretized by conforming C 1 finite elements on nonnested meshes , 1995 .

[2]  K. Stüben Algebraic multigrid (AMG): experiences and comparisons , 1983 .

[3]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[4]  Marian Brezina,et al.  Algebraic Multigrid on Unstructured Meshes , 1994 .

[5]  Tony F. Chan,et al.  Multilevel domain decomposition and multigrid methods for unstructured meshes: Algorithms and theory , 1997 .

[6]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[7]  Alan Weiser,et al.  Semicoarsening Multigrid on a Hypercube , 1992, SIAM J. Sci. Comput..

[8]  Susanne C. Brenner,et al.  An optimal-order nonconforming multigrid method for the Biharmonic equation , 1989 .

[9]  J. Mandel Balancing domain decomposition , 1993 .

[10]  Petr Vaněk Acceleration of convergence of a two-level algorithm by smoothing transfer operators , 1992 .

[11]  P. Oswald,et al.  Hierarchical conforming finite element methods for the biharmonic equation , 1992 .

[12]  Xuejun Zhang,et al.  Multilevel Schwarz Methods for the Biharmonic Dirichlet Problem , 1994, SIAM J. Sci. Comput..

[13]  Dietrich Braess,et al.  A conjugate gradient method and a multigrid algorithm for Morley s finite element approximation of the biharmonic equation , 1987 .

[14]  M. P. Ida,et al.  A Semicoarsening Multigrid Algorithm for SIMD Machines , 1992, SIAM J. Sci. Comput..

[15]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[16]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[17]  J. Ruge,et al.  Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG) , 1984 .

[18]  A. Brandt,et al.  The Multi-Grid Method for the Diffusion Equation with Strongly Discontinuous Coefficients , 1981 .

[19]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[20]  P. Vanek Fast multigrid solver , 1995 .