Studies of C4 and C10 methyl ester flames

[1]  C. Law,et al.  Non-premixed ignition, laminar flame propagation, and mechanism reduction of n-butanol, iso-butanol, and methyl butanoate , 2011 .

[2]  Tianfeng Lu,et al.  An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion , 2011 .

[3]  S. M. Sarathy,et al.  Experimental and kinetic modeling of methyl octanoate oxidation in an opposed-flow diffusion flame and a jet-stirred reactor , 2011 .

[4]  A. Marchese,et al.  Ignition delay of fatty acid methyl ester fuel droplets: Microgravity experiments and detailed numerical modeling , 2011 .

[5]  Frédérique Battin-Leclerc,et al.  Modeling Study of the Low-Temperature Oxidation of Large Methyl Esters from C11 to C19. , 2011, Proceedings of the Combustion Institute. International Symposium on Combustion.

[6]  T. Tsotsis,et al.  Fundamental Study of the Oxidation Characteristics and Pollutant Emissions of Model Biodiesel Fuels , 2010 .

[7]  Chunsheng Ji,et al.  Propagation and extinction of premixed C5–C12 n-alkane flames , 2010 .

[8]  Chitralkumar V. Naik,et al.  Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate , 2010 .

[9]  Casimir Togbé,et al.  Detailed Kinetic Mechanism for the Oxidation of Vegetable Oil Methyl Esters: New Evidence from Methyl Heptanoate , 2009 .

[10]  R. Hanson,et al.  An experimental and computational study of methyl ester decomposition pathways using shock tubes , 2009 .

[11]  Chunsheng Ji,et al.  Propagation and extinction of premixed dimethyl-ether/air flames , 2009 .

[12]  C. Togbé,et al.  A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation , 2009 .

[13]  M. Ribaucour,et al.  A study of the low temperature autoignition of methyl esters , 2009 .

[14]  Carrigan J. Hayes,et al.  Exploring the Oxidative Decompositions of Methyl Esters: Methyl Butanoate and Methyl Pentanoate as Model Compounds for Biodiesel , 2009 .

[15]  F. Egolfopoulos,et al.  Sensitivity of propagation and extinction of large hydrocarbon flames to fuel diffusion , 2009 .

[16]  Margaret S. Wooldridge,et al.  An Experimental Investigation of Structural Effects on the Auto-Ignition Properties of Two C5 Esters , 2009 .

[17]  Tianfeng Lu,et al.  Experimental and kinetic modeling study of extinction and ignition of methyl decanoate in laminar non-premixed flows , 2008 .

[18]  S. M. Sarathy,et al.  Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate , 2008 .

[19]  Angela Violi,et al.  Kinetic modeling of methyl butanoate in shock tube. , 2008, The journal of physical chemistry. A.

[20]  Guillaume Dayma,et al.  Experimental and Kinetic Modeling Study of the Oxidation of Methyl Hexanoate , 2008 .

[21]  John M. Simmie,et al.  Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate , 2008 .

[22]  P. R. Westmoreland,et al.  A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames , 2008 .

[23]  C. Westbrook,et al.  Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate , 2007 .

[24]  Juhun Song,et al.  Biodiesel combustion, emissions and emission control , 2007 .

[25]  Anthony J. Marchese,et al.  A wide-ranging kinetic modeling study of methyl butanoate combustion , 2007 .

[26]  Murray J. Thomson,et al.  A comparison of saturated and unsaturated C4 fatty acid methyl esters in an opposed flow diffusion flame and a jet stirred reactor , 2007 .

[27]  Tim Edwards,et al.  Ignition and extinction of non-premixed flames of single-component liquid hydrocarbons, jet fuels, and their surrogates , 2007 .

[28]  Tianfeng Lu,et al.  On the applicability of directed relation graphs to the reduction of reaction mechanisms , 2006 .

[29]  C. Westbrook,et al.  Chemical kinetic modeling study of the effects of oxygenated hydrocarbons on soot emissions from diesel engines. , 2006, The journal of physical chemistry. A.

[30]  Thomas A. Litzinger,et al.  Reduction of PAH and soot in premixed ethylene–air flames by addition of ethanol , 2006 .

[31]  Fokion N. Egolfopoulos,et al.  Extinction of premixed flames of practical liquid fuels: Experiments and simulations , 2006 .

[32]  S. Fernando,et al.  NOx Reduction from Biodiesel Fuels , 2006 .

[33]  Prankul Middha,et al.  Extinction of premixed H2/air flames: Chemical kinetics and molecular diffusion effects , 2005 .

[34]  Burak Atakan,et al.  An experimental study of fuel-rich 1,3-pentadiene and acetylene/propene flames , 2003 .

[35]  F. Egolfopoulos,et al.  Measurement of laminar flame speeds through digital particle image velocimetry: Mixtures of methane and ethane with hydrogen, oxygen, nitrogen, and helium , 2002 .

[36]  C. Sung,et al.  Determination of laminar flame speeds using digital particle image velocimetry: Binary Fuel blends of ethylene, n-Butane, and toluene , 2002 .

[37]  M. Graboski,et al.  Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. , 2001, Environmental science & technology.

[38]  William J. Pitz,et al.  DETAILED CHEMICAL KINETIC MECHANISMS FOR COMBUSTION OF OXYGENATED FUELS , 2000 .

[39]  C. Law,et al.  Soot Formation in Counterflow Ethylene Diffusion Flames from 1 to 2.5 Atmospheres , 1998 .

[40]  Robert J. Kee,et al.  PREMIX :A F ORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames , 1998 .

[41]  F. Egolfopoulos,et al.  Non-premixed hydrocarbon ignition at high strain rates , 1998 .

[42]  Robert L. McCormick,et al.  Combustion of fat and vegetable oil derived fuels in diesel engines , 1998 .

[43]  Fokion N. Egolfopoulos,et al.  Unsteady counterflowing strained diffusion flames: diffusion-limited frequency response , 1996, Journal of Fluid Mechanics.

[44]  Chung King Law,et al.  A flame-controlling continuation method for generating S-curve responses with detailed chemistry , 1996 .

[45]  F. Egolfopoulos Geometric and radiation effects on steady and unsteady strained laminar flames , 1994 .

[46]  James A. Miller,et al.  Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels , 1992 .

[47]  S. Stein,et al.  A new path to benzene in flames , 1991 .

[48]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[49]  P. R. Westmoreland,et al.  Forming benzene in flames by chemically activated isomerization , 1989 .

[50]  F. Egolfopoulos,et al.  Laminar flame speeds of methane-air mixtures under reduced and elevated pressures. Journal paper, 1985-1988 , 1989 .

[51]  F. Egolfopoulos,et al.  Experimental and numerical determination of laminar flame speeds of methane/(Ar, N2, CO2)-air mixtures as function of stoichiometry, pressure, and flame temperature , 1989 .

[52]  Robert J. Kee,et al.  A hybrid Newton/time-integration procedure for the solution of steady, laminar, one-dimensional, premixed flames , 1988 .

[53]  C. Law,et al.  Propagation and extinction of stretched premixed flames , 1988 .

[54]  James A. Miller,et al.  A Computational Model of the Structure and Extinction of Strained, Opposed Flow, Premixed Methane- , 1988 .

[55]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .

[56]  Byung-Ik Lee,et al.  A generalized thermodynamic correlation based on three‐parameter corresponding states , 1975 .

[57]  Warren E. Stewart,et al.  Molecular Parameters for Normal Fluids. Lennard-Jones 12-6 Potential , 1966 .