The effect of force-field parameters on properties of liquids: Parametrization of a simple three-site model for methanol

A simple rigid three-site model for methanol compatible with the simple point charge (SPC) water and the GROMOS96 force field is parametrized and tested. The influence of different force-field parameters, such as the methanol geometry and the charge distribution on several properties calculated by molecular dynamics is investigated. In particular an attempt was made to obtain good agreement with experimental data for the static dielectric constant and the mixing enthalpy with water. The model is compared to other methanol models from the literature in terms of the ability to reproduce a range of experimental properties.

[1]  Yoshio Nakamura,et al.  Nuclear magnetic resonance and molecular dynamics study of methanol up to the supercritical region , 1998 .

[2]  Giocondo Horacio Barbenza N° 79. — « Dielectric dispersion in pure methyl alcohol as a function of temperature » , 1968 .

[3]  Wilfred F. van Gunsteren,et al.  Consistent dielectric properties of the simple point charge and extended simple point charge water models at 277 and 300 K , 1994 .

[4]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[5]  S. Z. Mikhail,et al.  Densities and Viscosities of Methanol-Water Mixtures. , 1961 .

[6]  Robert L. Hurle,et al.  The effect of isotopic substitution on self-diffusion in methanol under pressure , 1980 .

[7]  Monte Carlo simulation of the binary liquid mixture water—methanol , 1993 .

[8]  A. Laaksonen,et al.  Three-Dimensional Structure in Water−Methanol Mixtures , 1997 .

[9]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[10]  Arnold Weissberger,et al.  Organic solvents;: Physical properties and methods of purification , 1970 .

[11]  D. Hartsough,et al.  Protein dynamics and solvation in aqueous and nonaqueous environments , 1993 .

[12]  Wilfred F. van Gunsteren,et al.  A molecular dynamics simulation study of chloroform , 1994 .

[13]  A. L. McClellan,et al.  Tables of experimental dipole moments , 1963 .

[14]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[15]  P. Stouten,et al.  Computation Confirms Contraction: A Molecular Dynamics Study of Liquid Methanol, Water and a Methanol-Water Mixture , 1990 .

[16]  H. Fröhlich,et al.  Theory of Dielectrics: Dielectric Constant and Dielectric Loss , 1960 .

[17]  B. Montgomery Pettitt,et al.  MODELING SOLVENT IN BIOMOLECULAR SYSTEMS , 1994 .

[18]  I. R. Mcdonald,et al.  Pair interactions and hydrogen-bond networks in models of liquid methanol , 1986 .

[19]  G. Pálinkás,et al.  Molecular dynamics simulations of water-methanol mixtures , 1991 .

[20]  J. Hermans,et al.  Excess free energy of liquids from molecular dynamics simulations. Application to water models. , 1988, Journal of the American Chemical Society.

[21]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[22]  G. Clifford,et al.  Densities in the Methanol-Water System at 25.00° , 1951 .

[23]  M. Mezei Theoretical Calculation of the Liquid—Vapor Coexistence Curve of Water, Chloroform and Methanol with the Cavity-Biased Monte Carlo Method in the Gibbs Ensemble , 1992 .

[24]  Martin Neumann,et al.  Dipole moment fluctuation formulas in computer simulations of polar systems , 1983 .

[25]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid alcohols , 1986 .

[26]  D. E. Gray,et al.  American Institute of Physics Handbook , 1957 .

[27]  Karl Jellinek Lehrbuch der physikalischen Chemie , 1932 .

[28]  Susumu Okazaki,et al.  Computer experiments on aqueous solution. I. Monte Carlo calculation on the hydration of methanol in an infinitely dilute aqueous solution with a new water–methanol pair potential , 1983 .

[29]  O. Edholm,et al.  Molecular dynamics simulations of an enzyme surrounded by vacuum, water, or a hydrophobic solvent. , 1994, Biophysical journal.

[30]  Mauro Ferrario,et al.  Molecular-dynamics simulation of liquid methanol , 1987 .

[31]  William L. Jorgensen,et al.  Quantum and statistical mechanical studies of liquids. 25. Solvation and conformation of methanol in water , 1983 .

[32]  Robert L. Kuczkowski,et al.  Molecular structures of gas‐phase polyatomic molecules determined by spectroscopic methods , 1979 .

[33]  Michael L. Klein,et al.  Molecular-dynamics simulation of aqueous mixtures : methanol, acetone, and ammonia , 1990 .

[34]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[35]  B. Smit,et al.  Molecular simulations of the vapour-liquid coexistence curve of methanol , 1995 .

[36]  Giovanni Ciccotti,et al.  Molecular dynamics of rigid systems in cartesian coordinates: A general formulation , 1982 .

[37]  Francesc X. Avilés,et al.  Free energies of transfer of Trp analogs from chloroform to water: Comparison of theory and experiment and the importance of adequate treatment of electrostatic and internal interactions , 1996 .

[38]  Max L. Berkowitz,et al.  Isothermal compressibility of SPC/E water , 1990 .

[39]  K. Heinzinger,et al.  Molecular dynamics investigation of the inter- and intramolecular motions in liquid methanol and methanol-water mixtures , 1991 .

[40]  A. Mark,et al.  The effect of environment on the stability of an integral membrane helix: molecular dynamics simulations of surfactant protein C in chloroform, methanol and water. , 1995, Journal of molecular biology.

[41]  B. Ladanyi,et al.  Wave vector dependent static dielectric properties of associated liquids: Methanol , 1990 .

[42]  M. Neumann The dielectric constant of water. Computer simulations with the MCY potential , 1985 .

[43]  R. C. Weast Handbook of chemistry and physics , 1973 .

[44]  T. Straatsma,et al.  Separation‐shifted scaling, a new scaling method for Lennard‐Jones interactions in thermodynamic integration , 1994 .

[45]  Vincenzo Mollica,et al.  Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution , 1981 .

[46]  C. Millot,et al.  A molecular Ornstein–Zernike study of popular models for water and methanol , 1999 .

[47]  E. Wilson The Present Status of the Statistical Method of Calculating Thermodynamic Functions. , 1940 .

[48]  A. Mark,et al.  Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations , 1994 .

[49]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .