Optimal configuration of a seismographic network: A statistical approach

We consider the problem of selecting sites for a seismographic network so that the network resolution will be optimal. Configurations are compared via the D-optimality criterion proposed in the statistical literature on optimal design of experiments. Optimal configurations are found using the efficient DETMAX algorithm. We also show how to implement the criterion and the algorithm in the presence of spatially correlated error terms.

[1]  M. J. Box,et al.  Factorial Designs, the |X′X| Criterion, and Some Related Matters@@@Factorial Designs, the |X prime X| Criterion, and Some Related Matters , 1971 .

[2]  John H. Woodhouse,et al.  CENTROID-MOMENT TENSOR SOLUTIONS FOR 201 MODERATE AND LARGE EARTHQUAKES OF 1981 , 1983 .

[3]  H. L. Lucas,et al.  DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS , 1959 .

[4]  T. Jordan,et al.  Numerical Modelling of Instantaneous Plate Tectonics , 1974 .

[5]  David C. Peters,et al.  Application of prediction analysis to hypocenter determination using a local array , 1972, Bulletin of the Seismological Society of America.

[6]  Gary L. Pavlis,et al.  Appraising earthquake hypocenter location errors: A complete, practical approach for single-event locations , 1986 .

[7]  Ray Buland,et al.  The mechanics of locating earthquakes , 1976, Bulletin of the Seismological Society of America.

[8]  K. Satake Effects of station coverage on moment tensor inversion , 1985 .

[9]  Anthony C. Atkinson,et al.  The Design of Experiments for Parameter Estimation , 1968 .

[10]  T. Francis,et al.  Hypocentral resolution of small ocean bottom seismic networks , 1978 .

[11]  K. Chaloner,et al.  Optimal Bayesian design applied to logistic regression experiments , 1989 .

[12]  A. Atkinson Developments in the Design of Experiments, Correspondent Paper , 1982 .

[13]  A. C. Atkinson,et al.  Developments in the Design of Experiments , 1982 .

[14]  Barbara Romanowicz,et al.  GEOSCOPE: A French initiative in long‐period three‐component global seismic networks , 1984 .

[15]  J. Kiefer,et al.  The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.

[16]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .

[17]  M. J. Box,et al.  Factorial Designs, the |X′X| Criterion, and Some Related Matters , 1971 .

[18]  Andrzej Kijko,et al.  An algorithm for the optimum distribution of a regional seismic network—I , 1977 .

[19]  J. Woodhouse,et al.  A strategy for deploying a seismological network for global studies of Earth structure , 1985 .

[20]  Robert A. Uhrhammer,et al.  Analysis of small seismographic station networks , 1980 .