Reactor network synthesis with guaranteed robust stability

Abstract This paper proposes a systematic approach to design reactor networks with guaranteed robust stability. The approach is based on the superstructure approach for reactor network synthesis. A structured dynamic model for reactor network modeling is formulated and embedded in a MINLP with robust eigenvalue constraints. Design parameters, structural alternatives and parametric uncertainty are considered simultaneously as design degrees of freedom. Structural alternatives result from decisions on the existence of reactors and flow connections in the superstructure. Parametric uncertainty may either result from model uncertainties such as reaction kinetic constants or heat transfer coefficients, or from process uncertainties including slow disturbances in load or quality of raw materials. A tailored two-step solution strategy is proposed to tackle the robust mixed-integer optimization problem. A case study with five continuous stirred-tank reactors (CSTR) and five plug flow reactors (PFR) is presented for illustration.

[1]  Michael L. Overton,et al.  Stability Optimization for Polynomials and Matrices , 2014 .

[2]  Said S.E.H. Elnashaie,et al.  Exploration and exploitation of bifurcation/chaotic behavior of a continuous fermentor for the production of ethanol , 2003 .

[3]  Martin Mönnigmann,et al.  Normal Vectors on Manifolds of Critical Points for Parametric Robustness of Equilibrium Solutions of ODE Systems , 2002, J. Nonlinear Sci..

[4]  Oliver Stein,et al.  Solving Semi-Infinite Optimization Problems with Interior Point Techniques , 2003, SIAM J. Control. Optim..

[5]  Efstratios N. Pistikopoulos,et al.  Optimal design of dynamic systems under uncertainty , 1996 .

[6]  Oliver Stein,et al.  Bi-Level Strategies in Semi-Infinite Programming , 2003 .

[7]  A. Lewis,et al.  Two numerical methods for optimizing matrix stability , 2002 .

[8]  C. Floudas Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications , 1995 .

[9]  Christodoulos A. Floudas,et al.  Optimization of complex reactor networks—I. Isothermal operation , 1990 .

[10]  Raphael T. Haftka,et al.  Derivatives of eigenvalues and eigenvectors of a general complex matrix , 1988 .

[11]  Adil M. Bagirov,et al.  Introduction to Nonsmooth Optimization , 2014 .

[12]  K. E. Chu,et al.  Derivatives of Eigenvalues and Eigenvectors of Matrix Functions , 1993, SIAM J. Matrix Anal. Appl..

[13]  I. Stewart,et al.  Sequential Bifurcations in Continuous Stirred Tank Chemical Reactors Coupled in Series , 1985 .

[14]  M. Marden Geometry of Polynomials , 1970 .

[15]  Efstratios N. Pistikopoulos,et al.  Robust stability considerations in optimal design of dynamic systems under uncertainty , 1997 .

[16]  A. M. Blanco,et al.  Interaction between process design and process operability of chemical processes: an eigenvalue optimization approach , 2003, Comput. Chem. Eng..

[17]  M. Kubicek,et al.  Multiplicity and stability in a sequence of two nonadiabatic nonisothermal CSTR , 1980 .

[18]  Lorenz T. Biegler,et al.  MPEC problem formulations and solution strategies with chemical engineering applications , 2008, Comput. Chem. Eng..

[19]  Wolfgang Marquardt,et al.  Robust control design of a class of nonlinear input- and state-constrained systems , 2013, Annu. Rev. Control..

[20]  Ignacio E. Grossmann,et al.  An index for operational flexibility in chemical process design. Part I: Formulation and theory , 1985 .

[21]  Christodoulos A. Floudas,et al.  Stability in optimal design: Synthesis of complex reactor networks , 1994 .

[22]  Ignacio E. Grossmann,et al.  Optimal process design under uncertainty , 1983 .

[23]  G. Still,et al.  Second order optimality conditions for generalized semi-infinite programming problems , 1995 .

[24]  Wolfgang Marquardt,et al.  Robust Design of Closed-Loop Nonlinear Systems with Input and State Constraints , 2006 .

[25]  Paul I. Barton,et al.  Towards global bilevel dynamic optimization , 2009, J. Glob. Optim..

[26]  K. Sundmacher,et al.  Methodology for the Design of Optimal Chemical Reactors based on the Concept of Elementary Process Functions , 2010 .

[27]  Alexander Mitsos,et al.  Global optimization of generalized semi-infinite programs via restriction of the right hand side , 2014, Journal of Global Optimization.

[28]  Adrian S. Lewis,et al.  Nonsmooth optimization via quasi-Newton methods , 2012, Mathematical Programming.

[29]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[30]  M. Feinberg Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems , 1987 .

[31]  G. Still,et al.  On Optimality Conditions for Generalized Semi-Infinite Programming Problems , 2000 .

[32]  Ignacio E. Grossmann,et al.  Systematic Methods of Chemical Process Design , 1997 .

[33]  N. Sahinidis,et al.  Steady‐state process optimization with guaranteed robust stability under parametric uncertainty , 2011 .

[34]  Bojan Pahor,et al.  Synthesis of reactor networks in overall process flowsheets within the multilevel MINLP approach , 2001 .

[35]  Oliver Stein,et al.  How to solve a semi-infinite optimization problem , 2012, Eur. J. Oper. Res..

[36]  Lorenz T. Biegler,et al.  A superstructure based approach to chemical reactor network synthesis , 1990 .

[37]  Ji-guang Sun Eigenvalues and eigenvectors of a matrix dependent on several parameters , 1985 .

[38]  Michael A. Saunders,et al.  USER’S GUIDE FOR SNOPT 5.3: A FORTRAN PACKAGE FOR LARGE-SCALE NONLINEAR PROGRAMMING , 2002 .

[39]  L. Biegler,et al.  Algorithmic synthesis of chemical reactor networks using mathematical programming , 1986 .