Strict Minimality Conditions in Nondifferentiable Multiobjective Programming

In this paper, sufficient conditions for superstrict minima of order m to nondifferentiable multiobjective optimization problems with an arbitrary feasible set are provided. These conditions are expressed through the Studniarski derivative of higher order. If the objective function is Hadamard differentiable, a characterization for strict minimality of order 1 (which coincides with superstrict minimality in this case) is obtained.