A frame-invariant vector limiter for flux corrected nodal remap in arbitrary Lagrangian-Eulerian flow computations
暂无分享,去创建一个
[1] J. Halleux,et al. An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .
[2] Stefan Turek,et al. Multidimensional FEM‐FCT schemes for arbitrary time stepping , 2003 .
[3] Dmitri Kuzmin,et al. Explicit and implicit FEM-FCT algorithms with flux linearization , 2009, J. Comput. Phys..
[4] William J. Rider,et al. A conservative nodal variational multiscale method for Lagrangian shock hydrodynamics , 2010 .
[5] J. Falcovitz,et al. Vector Image Polygon (VIP) limiters in ALE Hydrodynamics , 2010 .
[6] Pavel Váchal,et al. Symmetry- and essentially-bound-preserving flux-corrected remapping of momentum in staggered ALE hydrodynamics , 2013, J. Comput. Phys..
[7] Raphaël Loubère,et al. ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..
[8] Guglielmo Scovazzi,et al. A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework , 2007 .
[9] Guglielmo Scovazzi,et al. Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach , 2012, J. Comput. Phys..
[10] M. Fiedler. Special matrices and their applications in numerical mathematics , 1986 .
[11] Dmitri Kuzmin,et al. On the design of general-purpose flux limiters for finite element schemes. I. Scalar convection , 2006, J. Comput. Phys..
[12] L. Sedov. Similarity and Dimensional Methods in Mechanics , 1960 .
[13] John N. Shadid,et al. Failsafe flux limiting and constrained data projections for equations of gas dynamics , 2010, J. Comput. Phys..
[14] Clifford Ambrose Truesdell,et al. The elements of continuum mechanics , 1965 .
[15] Joseph Falcovitz,et al. VIP (Vector Image Polygon) multi-dimensional slope limiters for scalar variables , 2013 .
[16] Jay P. Boris,et al. Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .
[17] Tzanio V. Kolev,et al. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..
[18] Charbel Farhat,et al. The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .
[19] L. E. Malvern. Introduction to the mechanics of a continuous medium , 1969 .
[20] S. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .
[21] C.A.J. Fletcher,et al. The group finite element formulation , 1983 .
[22] Mikhail J. Shashkov,et al. Conservative multi-material remap for staggered multi-material Arbitrary Lagrangian-Eulerian methods , 2014, J. Comput. Phys..
[23] Antony Jameson,et al. Positive schemes and shock modelling for compressible flows , 1995 .
[24] Guglielmo Scovazzi,et al. A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements , 2011, J. Comput. Phys..
[25] Rainald Löhner,et al. Improved ALE mesh velocities for moving bodies , 1996 .
[26] Stefan Turek,et al. Flux correction tools for finite elements , 2002 .
[27] Guglielmo Scovazzi,et al. A generalized view on Galilean invariance in stabilized compressible flow computations , 2010 .
[28] Pierre-Henri Maire,et al. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..
[29] D. Kuzmin,et al. High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter , 2004 .
[30] Joseph Falcovitz,et al. Slope limiting for vectors: A novel vector limiting algorithm , 2011 .
[31] Giuseppe Quaranta,et al. Arbitrary Lagrangian Eulerian formulation for two-dimensional flows using dynamic meshes with edge swapping , 2011, J. Comput. Phys..
[32] M. Gurtin,et al. An introduction to continuum mechanics , 1981 .
[33] Guglielmo Scovazzi,et al. Galilean invariance and stabilized methods for compressible flows , 2007 .
[34] W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .
[35] J. Peraire,et al. Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes equations , 1987 .