The emergence of time

Classically, one could imagine a completely static space, thus without time. As is known, this picture is unconceivable in quantum physics due to vacuum fluctuations. The fundamental difference between the two frameworks is that classical physics is commutative (simultaneous observables) while quantum physics is intrinsically noncommutative (Heisenberg uncertainty relations). In this sense, we may say that time is generated by noncommutativity; if this statement is correct, we should be able to derive time out of a noncommutative space. We know that a von Neumann algebra is a noncommutative space. About 50 years ago the Tomita-Takesaki modular theory revealed an intrinsic evolution associated with any given (faithful, normal) state of a von Neumann algebra, so a noncommutative space is intrinsically dynamical. This evolution is characterised by the Kubo-Martin-Schwinger thermal equilibrium condition in quantum statistical mechanics (Haag, Hugenholtz, Winnink), thus modular time is related to temperature. Indeed, positivity of temperature fixes a quantum-thermodynamical arrow of time. We shall sketch some aspects of our recent work extending the modular evolution to a quantum operation (completely positive map) level and how this gives a mathematically rigorous understanding of entropy bounds in physics and information theory. A key point is the relation with Jones' index of subfactors. In the last part, we outline further recent entropy computations in relativistic quantum field theory models by operator algebraic methods, that can be read also within classical information theory. The information contained in a classical wave packet is defined by the modular theory of standard subspaces and related to the quantum null energy inequality.

[1]  R. Longo,et al.  Comment on the Bekenstein bound , 2018, Journal of Geometry and Physics.

[2]  Rudolf Haag,et al.  Local observables and particle statistics II , 1971 .

[3]  R. Longo Minimal index and Braided Subfactors , 1992 .

[4]  S. Yamagami Modular Theory for Bimodules , 1994 .

[5]  Rudolf Haag,et al.  Local quantum physics : fields, particles, algebras , 1993 .

[6]  C. Fewster,et al.  Institute for Mathematical Physics Quantum Energy Inequalities in Two–dimensional Conformal Field Theory Quantum Energy Inequalities in Two-dimensional Conformal Field Theory , 2022 .

[7]  John E. Roberts,et al.  Local observables and particle statistics I , 1971 .

[8]  H. Casini Relative entropy and the Bekenstein bound , 2008, 0804.2182.

[9]  A. Connes,et al.  Von Neumann algebra automorphisms and time-thermodynamics relation in general covariant quantum theories , 1994, gr-qc/9406019.

[10]  A. Connes On the spatial theory of von Neumann algebras , 1980 .

[11]  Roberto Longo,et al.  Notes for a Quantum Index Theorem , 2000, math/0003082.

[12]  D. Buchholz,et al.  The Current Algebra on the Circle as a Germ of Local Field Theories , 1988 .

[13]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[14]  竹崎 正道 Tomita's theory of modular Hilbert algebras and its applications , 1970 .

[15]  R. Longo,et al.  Relative entropy in CFT , 2017, Advances in Mathematics.

[16]  Vincenzo Morinelli,et al.  The Bisognano–Wichmann Property for Asymptotically Complete Massless QFT , 2019, 1909.12809.

[17]  Carlo Rovelli,et al.  “Forget time” , 2009, 0903.3832.

[18]  J. Bekenstein Universal upper bound on the entropy-to-energy ratio for bounded systems , 1981, Jacob Bekenstein.

[19]  S. Popa,et al.  Entropy and index for subfactors , 1986 .

[20]  S. Hawking Particle creation by black holes , 1975 .

[21]  An Analogue of the Kac—Wakimoto Formula¶and Black Hole Conditional Entropy , 1996, gr-qc/9605073.

[22]  R. Longo Algebraic and modular structure of von Neumann algebras of physics , 1982 .

[23]  Bharath Ron,et al.  What is Time ? , 2017, ArXiv.

[24]  Robert König,et al.  Quantum entropy and its use , 2017 .

[25]  R. Wald Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics , 1994 .

[26]  Roberto Longo,et al.  Index of subfactors and statistics of quantum fields. I , 1989 .

[27]  A. Connes,et al.  Dynamical Entropy of C* Algebras and yon Neumann Algebras , 1987 .

[28]  A. Connes,et al.  Dynamical entropy ofC* algebras and von Neumann algebras , 1987 .

[29]  A theory of dimension , 1996, funct-an/9604008.

[30]  A. Connes Une classi cation des facteurs de type III , 1973 .

[31]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[32]  R. Conti,et al.  Modular Theory, Non-Commutative Geometry and Quantum Gravity ? , 2010, 1007.4094.

[33]  R. Longo,et al.  Minimal Index and Dimension for 2-C*-Categories with Finite-Dimensional Centers , 2018, Communications in Mathematical Physics.

[34]  Conformal Covariance and Positivity of Energy in Charged Sectors , 2005, math-ph/0507066.

[35]  Roberto Longo,et al.  On Landauer’s Principle and Bound for Infinite Systems , 2017, ArXiv.

[36]  Huzihiro Araki,et al.  Mathematical theory of quantum fields , 1999 .

[37]  E. Witten APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory , 2018, Reviews of Modern Physics.

[38]  Noncommutative Spectral Invariants and Black Hole Entropy , 2004, math-ph/0405037.

[39]  R. Longo,et al.  Modular structure of the local algebras associated with the free massless scalar field theory , 1982 .

[40]  Erwin Schrödinger International,et al.  On revolutionizing quantum field theory with Tomita’s modular theory , 2000 .

[41]  R. Bousso,et al.  Proof of the Quantum Null Energy Condition , 2015, 1509.02542.

[42]  H. Araki Relative Entropy of States of von Neumann Algebras , 1975 .

[43]  R. Longo,et al.  Non-equilibrium Thermodynamics and Conformal Field Theory , 2016, 1605.01581.

[44]  W. Unruh Notes on black-hole evaporation , 1976 .

[45]  R. Longo Entropy Distribution of Localised States , 2018, Communications in Mathematical Physics.

[46]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[47]  T. Shioda,et al.  Construction of elliptic curves with high rank via the invariants of the Weyl groups , 1991 .

[48]  H. Kosaki Extension of Jones' theory on index to arbitrary factors , 1986 .

[49]  Vaughan F. R. Jones Index for subfactors , 1983 .

[50]  THE MODULAR THEORY , 1999 .

[51]  F. Hiai Minimum index for subfactors and entropy. II , 1991 .

[52]  G. Sewell Relativity of temperature and the hawking effect , 1980 .

[53]  H. Epstein,et al.  Nonpositivity of the energy density in quantized field theories , 1965 .

[54]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[55]  A. Ishibashi,et al.  News versus information , 2019, Classical and Quantum Gravity.

[56]  Eyvind H. Wichmann,et al.  On the duality condition for a Hermitian scalar field , 1975 .

[57]  R. Longo Entropy of coherent excitations , 2019, Letters in Mathematical Physics.

[58]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[59]  T. Faulkner,et al.  Recovering the QNEC from the ANEC , 2018, Communications in Mathematical Physics.

[60]  S. Hollands Relative entropy for coherent states in chiral CFT , 2019, Letters in Mathematical Physics.

[61]  Rudolf Haag,et al.  On the equilibrium states in quantum statistical mechanics , 1967 .