Parallel Multilevel Constructions for Constant Dimension Codes

Constant dimension codes (CDCs), as special subspace codes, have received a lot of attention due to their application in random network coding. This paper introduces a family of new codes, called rank metric codes with given ranks (GRMCs), to generalize the parallel construction in [Xu and Chen, IEEE Trans. Inf. Theory, 64 (2018), 6315–6319] and the classic multilevel construction. A Singleton-like upper bound and a lower bound for GRMCs derived from Gabidulin codes are given. Via GRMCs, two effective constructions for CDCs are presented by combining the parallel construction and the multilevel construction. Many CDCs with larger size than the previously best known codes are given. The ratio between the new lower bound and the known upper bound for <inline-formula> <tex-math notation="LaTeX">$(4\delta,2\delta,2\delta)_{q}$ </tex-math></inline-formula>-CDCs is calculated. It is greater than 0.99926 for any prime power <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> and any <inline-formula> <tex-math notation="LaTeX">$\delta \geq 3$ </tex-math></inline-formula>.

[1]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[2]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[3]  Ron M. Roth,et al.  Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.

[4]  Daniel Heinlein Generalized Linkage Construction for Constant-Dimension Codes , 2021, IEEE Transactions on Information Theory.

[5]  Hao Chen,et al.  New Constant-Dimension Subspace Codes from Maximum Rank Distance Codes , 2018, IEEE Transactions on Information Theory.

[6]  Alexander Vardy,et al.  Error-Correcting Codes in Projective Space , 2011, IEEE Trans. Inf. Theory.

[7]  Reihaneh Safavi-Naini,et al.  Linear Authentication Codes: Bounds and Constructions , 2001, INDOCRYPT.

[8]  Natalia Silberstein,et al.  Enumerative Coding for Grassmannian Space , 2009, IEEE Transactions on Information Theory.

[9]  Tao Feng,et al.  Constructions for Optimal Ferrers Diagram Rank-Metric Codes , 2018, IEEE Transactions on Information Theory.

[10]  Heide Gluesing-Luerssen,et al.  Maximal Ferrers Diagram Codes: Constructions and Genericity Considerations , 2018, IEEE Transactions on Information Theory.

[11]  Xianmang He A Hierarchical-based Greedy Algorithm for Echelon-Ferrers Construction , 2019, ArXiv.

[12]  Natalia Silberstein,et al.  Codes and designs related to lifted MRD codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[13]  Tao Zhang,et al.  Constructions of optimal Ferrers diagram rank metric codes , 2019, Des. Codes Cryptogr..

[14]  Shu-Tao Xia,et al.  Johnson type bounds on constant dimension codes , 2007, Des. Codes Cryptogr..

[15]  Sascha Kurz,et al.  Coset Construction for Subspace Codes , 2015, IEEE Transactions on Information Theory.

[16]  Daniel Heinlein,et al.  New LMRD Code Bounds for Constant Dimension Codes and Improved Constructions , 2018, IEEE Transactions on Information Theory.

[17]  Hao Chen,et al.  New Constructions of Subspace Codes Using Subsets of MRD Codes in Several Blocks , 2019, IEEE Transactions on Information Theory.

[18]  Vitaly Skachek,et al.  Recursive Code Construction for Random Networks , 2008, IEEE Transactions on Information Theory.

[19]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[20]  Alberto Ravagnani,et al.  Subspace codes from Ferrers diagrams , 2014, ArXiv.

[21]  Natalia Silberstein,et al.  Large constant dimension codes and lexicodes , 2010, Adv. Math. Commun..

[22]  Joachim Rosenthal,et al.  Cyclic Orbit Codes , 2011, IEEE Transactions on Information Theory.

[23]  Joachim Rosenthal,et al.  New Improvements on the Echelon-Ferrers Construction , 2010, ArXiv.

[24]  Natalia Silberstein,et al.  Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.

[25]  Alfred Wassermann,et al.  Tables of subspace codes , 2016, ArXiv.

[26]  R. Ahlswede,et al.  On error control codes for random network coding , 2009, 2009 Workshop on Network Coding, Theory, and Applications.

[27]  Alberto Ravagnani,et al.  Optimal Ferrers Diagram Rank-Metric Codes , 2014, IEEE Transactions on Information Theory.

[28]  Peter Frankl,et al.  The Erdös-Ko-Rado theorem for vector spaces , 1986, J. Comb. Theory, Ser. A.

[29]  Antonio Cossidente,et al.  Combining subspace codes , 2019, ArXiv.

[30]  Heide Gluesing-Luerssen,et al.  Construction of subspace codes through linkage , 2015, Adv. Math. Commun..

[31]  Sascha Kurz,et al.  Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance , 2008, MMICS.

[32]  Sascha Kurz,et al.  A note on the linkage construction for constant dimension codes , 2019, ArXiv.

[33]  Tao Feng,et al.  Several classes of optimal Ferrers diagram rank-metric codes , 2018, Linear Algebra and its Applications.

[34]  Natalia Silberstein,et al.  Subspace Codes Based on Graph Matchings, Ferrers Diagrams, and Pending Blocks , 2014, IEEE Transactions on Information Theory.