Parallel Multilevel Constructions for Constant Dimension Codes
暂无分享,去创建一个
[1] Frank R. Kschischang,et al. A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.
[2] Frank R. Kschischang,et al. Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.
[3] Ron M. Roth,et al. Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.
[4] Daniel Heinlein. Generalized Linkage Construction for Constant-Dimension Codes , 2021, IEEE Transactions on Information Theory.
[5] Hao Chen,et al. New Constant-Dimension Subspace Codes from Maximum Rank Distance Codes , 2018, IEEE Transactions on Information Theory.
[6] Alexander Vardy,et al. Error-Correcting Codes in Projective Space , 2011, IEEE Trans. Inf. Theory.
[7] Reihaneh Safavi-Naini,et al. Linear Authentication Codes: Bounds and Constructions , 2001, INDOCRYPT.
[8] Natalia Silberstein,et al. Enumerative Coding for Grassmannian Space , 2009, IEEE Transactions on Information Theory.
[9] Tao Feng,et al. Constructions for Optimal Ferrers Diagram Rank-Metric Codes , 2018, IEEE Transactions on Information Theory.
[10] Heide Gluesing-Luerssen,et al. Maximal Ferrers Diagram Codes: Constructions and Genericity Considerations , 2018, IEEE Transactions on Information Theory.
[11] Xianmang He. A Hierarchical-based Greedy Algorithm for Echelon-Ferrers Construction , 2019, ArXiv.
[12] Natalia Silberstein,et al. Codes and designs related to lifted MRD codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.
[13] Tao Zhang,et al. Constructions of optimal Ferrers diagram rank metric codes , 2019, Des. Codes Cryptogr..
[14] Shu-Tao Xia,et al. Johnson type bounds on constant dimension codes , 2007, Des. Codes Cryptogr..
[15] Sascha Kurz,et al. Coset Construction for Subspace Codes , 2015, IEEE Transactions on Information Theory.
[16] Daniel Heinlein,et al. New LMRD Code Bounds for Constant Dimension Codes and Improved Constructions , 2018, IEEE Transactions on Information Theory.
[17] Hao Chen,et al. New Constructions of Subspace Codes Using Subsets of MRD Codes in Several Blocks , 2019, IEEE Transactions on Information Theory.
[18] Vitaly Skachek,et al. Recursive Code Construction for Random Networks , 2008, IEEE Transactions on Information Theory.
[19] Philippe Delsarte,et al. Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.
[20] Alberto Ravagnani,et al. Subspace codes from Ferrers diagrams , 2014, ArXiv.
[21] Natalia Silberstein,et al. Large constant dimension codes and lexicodes , 2010, Adv. Math. Commun..
[22] Joachim Rosenthal,et al. Cyclic Orbit Codes , 2011, IEEE Transactions on Information Theory.
[23] Joachim Rosenthal,et al. New Improvements on the Echelon-Ferrers Construction , 2010, ArXiv.
[24] Natalia Silberstein,et al. Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.
[25] Alfred Wassermann,et al. Tables of subspace codes , 2016, ArXiv.
[26] R. Ahlswede,et al. On error control codes for random network coding , 2009, 2009 Workshop on Network Coding, Theory, and Applications.
[27] Alberto Ravagnani,et al. Optimal Ferrers Diagram Rank-Metric Codes , 2014, IEEE Transactions on Information Theory.
[28] Peter Frankl,et al. The Erdös-Ko-Rado theorem for vector spaces , 1986, J. Comb. Theory, Ser. A.
[29] Antonio Cossidente,et al. Combining subspace codes , 2019, ArXiv.
[30] Heide Gluesing-Luerssen,et al. Construction of subspace codes through linkage , 2015, Adv. Math. Commun..
[31] Sascha Kurz,et al. Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance , 2008, MMICS.
[32] Sascha Kurz,et al. A note on the linkage construction for constant dimension codes , 2019, ArXiv.
[33] Tao Feng,et al. Several classes of optimal Ferrers diagram rank-metric codes , 2018, Linear Algebra and its Applications.
[34] Natalia Silberstein,et al. Subspace Codes Based on Graph Matchings, Ferrers Diagrams, and Pending Blocks , 2014, IEEE Transactions on Information Theory.