Transport Model Approach to Λ and Λ¯ Polarization in Heavy-Ion Collisions

This paper investigates the symmetry breaking between the polarizations of Λ and Λ¯ hyperons in relativistic collisions of heavy ions at intermediate and low energies. The microscopic transport model UrQMD is employed to study the thermal vorticity of hot and dense nuclear matter formed in non-central Au + Au collisions at center-of-mass energies 7.7≤sNN≤62.4 GeV. The whole volume of an expanding fireball is subdivided into small cubic cells. Then, we trace the final Λ and Λ¯ hyperons back to their last interaction point within a certain cell. Extracting the bulk parameters, such as energy density, net baryon density, and net strangeness of the hot and dense medium in the cell, one can obtain the cell temperature and the chemical potentials at the time of the hyperon emission. To do this, the extracted characteristics have to be fitted to the statistical model (SM) of ideal hadron gas. After that, the vorticity of nuclear matter and polarization of both hyperons are calculated. We found that the polarization of both Λ and Λ¯ increases with decreasing energy of heavy-ion collisions. The stronger polarization of Λ¯ is explained by (i) the slightly different freeze-out conditions of both hyperons and (ii) the different space–time distributions of Λ and Λ¯.

[1]  Y. Ivanov Global Λ polarization in moderately relativistic nuclear collisions , 2021 .

[2]  Gang Chen,et al.  A study of $$\varLambda $$ Λ and $$\bar{\varLambda }$$ , 2021 .

[3]  Yi-long Xie,et al.  A study of Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda $$\end{document} and Λ¯\documentclass[12pt]{min , 2021, The European Physical Journal C.

[4]  L. Bravina,et al.  Is different Λ and Λ¯ polarization caused by different spatio-temporal freeze-out picture? , 2020 .

[5]  F. Becattini,et al.  Polarization and Vorticity in the Quark–Gluon Plasma , 2020, Annual Review of Nuclear and Particle Science.

[6]  L. Bravina,et al.  Different space-time freeze-out picture -- an explanation of different $\Lambda$ and $\bar{\Lambda}$ polarization? , 2019, 1910.06292.

[7]  V. Toneev,et al.  Estimates of hyperon polarization in heavy-ion collisions at collision energies sNN=4–40GeV , 2019, Physical Review C.

[8]  L. Csernai,et al.  Λ and Λ¯ spin interaction with meson fields generated by the baryon current in high energy nuclear collisions , 2018, Physical Review C.

[9]  G. S. Averichev,et al.  Global polarization of Λ hyperons in Au + Au collisions at sNN=200 GeV , 2018, Physical Review C.

[10]  V. Toneev,et al.  Vorticity and hyperon polarization at energies available at JINR Nuclotron-based Ion Collider fAcility , 2018, Physical Review C.

[11]  G. S. Averichev,et al.  Global Λ hyperon polarization in nuclear collisions , 2017, Nature.

[12]  L. Pang,et al.  Global Λ polarization in heavy-ion collisions from a transport model , 2017, 1704.01507.

[13]  L. Csernai,et al.  Global Λ polarization in high energy collisions , 2017, 1703.03770.

[14]  Y. Ivanov,et al.  Vorticity in heavy-ion collisions at the JINR Nuclotron-based Ion Collider fAcility , 2017, 1701.01319.

[15]  S. Voloshin,et al.  Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down , 2016, 1610.02506.

[16]  O. Teryaev,et al.  Axial anomaly and energy dependence of hyperon polarization in heavy-ion collisions , 2016, 1606.08398.

[17]  I. Karpenko,et al.  Study of polarization in relativistic nuclear collisions , 2017 .

[18]  S. Chattopadhyay,et al.  Thermalization of dense hadronic matter in Au + Au collisions at energies available at the Facility for Antiproton and Ion Research , 2016 .

[19]  F. Becattini,et al.  Study of (cid:2) polarization in relativistic nuclear collisions at √ s NN = 7 . 7–200 GeV , 2017 .

[20]  L. Pang,et al.  Vortical Fluid and Λ Spin Correlations in High-Energy Heavy-Ion Collisions. , 2016, Physical review letters.

[21]  H. Petersen,et al.  Deviations of the Energy-Momentum Tensor from Equilibrium in the Initial State for Hydrodynamics from Transport Approaches , 2015, 1508.04378.

[22]  O. Teryaev,et al.  Femto-vortex sheets and hyperon polarization in heavy-ion collisions , 2015, 1507.04652.

[23]  L. Bravina,et al.  How many of the scaling trends in $pp$ collisions will be violated at sqrt{s_NN} = 14 TeV ? - Predictions from Monte Carlo quark-gluon string model , 2010, 1011.2703.

[24]  F. Becattini,et al.  A study of vorticity formation in high energy nuclear collisions , 2015, 1501.04468.

[25]  F. Becattini,et al.  Λ polarization in peripheral heavy ion collisions , 2013, 1304.4427.

[26]  Xin-Nian Wang,et al.  Chiral anomaly and local polarization effect from the quantum kinetic approach. , 2012, Physical review letters.

[27]  S. Ostapchenko,et al.  Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I. QGSJET-II model , 2010, 1010.1869.

[28]  O. Teryaev,et al.  Chiral vortaic effect and neutron asymmetries in heavy-ion collisions , 2010, 1006.1331.

[29]  H. Stöcker,et al.  Microscopic models and effective equation of state in nuclear collisions in the vicinity of $E_{\rm lab} = 30A$ GeV at the GSI Facility for Antiproton and Ion Research (FAIR) and beyond , 2008 .

[30]  Marcus Bleicher,et al.  Fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage , 2008, 0806.1695.

[31]  J. Rizzo,et al.  Angular momentum conservation in heavy ion collisions at very high energy , 2007, 0711.1253.

[32]  M. Gyulassy,et al.  Polarization probes of vorticity in heavy ion collisions , 2007, 0708.0035.

[33]  E. al.,et al.  Global polarization measurement in Au+Au collisions , 2006, nucl-ex/0605035.

[34]  Xin-Nian Wang,et al.  Globally polarized quark-gluon plasma in noncentral A + A collisions. , 2004, Physical review letters.

[35]  A. Faessler,et al.  Equation of state of resonance-rich matter in the central cell in heavy-ion collisions at s = 200 A GeV , 2000, hep-ph/0010172.

[36]  S. Ostapchenko,et al.  Parton-based Gribov–Regge theory , 2000, hep-ph/0007198.

[37]  S. Bass,et al.  RELATIVISTIC HADRON-HADRON COLLISIONS IN THE ULTRA-RELATIVISTIC QUANTUM MOLECULAR DYNAMICS MODEL , 1999, hep-ph/9909407.

[38]  S. Bass,et al.  Local equilibrium in heavy ion collisions: Microscopic model versus statistical model analysis , 1999, hep-ph/9906548.

[39]  S. Bass,et al.  Local Thermal and Chemical Equilibration and the Equation of State in Relativistic Heavy Ion Collisions , 1998, nucl-th/9810036.

[40]  S. Bass,et al.  Local thermodynamical equilibrium and the equation of state of hot, dense matter created in Au+Au collisions at AGS , 1998, nucl-th/9804008.

[41]  S. Bass,et al.  Microscopic models for ultrarelativistic heavy ion collisions , 1998, nucl-th/9803035.

[42]  L. Bravina,et al.  Freeze-out in relativistic heavy ion collisions at AGS energies , 1995 .

[43]  L. Bravina,et al.  The Monte Carlo Realization of Quark - Gluon String Model for Description of High-energy Hadron Hadron Interactions , 1989 .

[44]  T. Sjöstrand,et al.  Parton fragmentation and string dynamics , 1983 .

[45]  Julian Schwinger,et al.  On gauge invariance and vacuum polarization , 1951 .