Reflectivity of VUV-sensitive silicon photomultipliers in liquid Xenon

Silicon photomultipliers are regarded as a very promising technology for next-generation, cutting-edge detectors for low-background experiments in particle physics. This work presents systematic reflectivity studies of Silicon Photomultipliers (SiPM) and other samples in liquid xenon at vacuum ultraviolet (VUV) wavelengths. A dedicated setup at the University of Münster has been used that allows to acquire angle-resolved reflection measurements of various samples immersed in liquid xenon with 0.45° angular resolution. Four samples are investigated in this work: one Hamamatsu VUV4 SiPM, one FBK VUV-HD SiPM, one FBK wafer sample and one Large-Area Avalanche Photodiode (LA-APD) from EXO-200. The reflectivity is determined to be 25–36 % at an angle of incidence of 20° for the four samples and increases to up to 65 % at 70° for the LA-APD and the FBK samples. The Hamamatsu VUV4 SiPM shows a decline with increasing angle of incidence. The reflectivity results will be incorporated in upcoming light response simulations of the nEXO detector.

A. K. Soma | M. Richman | Z. Li | F. Nolet | S. Parent | N. Roy | S. Charlebois | J. Pratte | S. Viel | V. Veeraraghavan | D. Schulte | T. Michel | G. Anton | L. Fabris | F. Retière | D. Moore | A. Piepke | G. Gratta | S. Al Kharusi | T. Brunner | E. Caden | A. Pocar | R. Saldanha | A. Odian | P. Gautam | R. DeVoe | J. Ringuette | M. Tarka | S. Rescia | J. Farine | B. Cleveland | R. Maclellan | M. Heffner | G. Giacomini | I. Ostrovskiy | M. Worcester | W. Yan | C. Weinheimer | C. Licciardi | G. Li | R. Tsang | T. Stiegler | D. Goeldi | A. Kuchenkov | I. Badhrees | V. Belov | C. Chambers | A. Craycraft | T. Daniels | A. Der Mesrobian-Kabakian | M. Dolinski | W. Fairbank | S. Feyzbakhsh | R. Gornea | E. Hansen | M. Hughes | A. Jamil | M. Jewell | A. Karelin | L. Kaufman | R. Krücken | Y. Lan | D. Leonard | S. Li | B. Mong | K. Murray | P. Rowson | V. Stekhanov | M. Wagenpfeil | U. Wichoski | O. Zeldovich | T. Ziegler | G. Cao | A. Bolotnikov | E. Raguzin | E. Angelico | E. Hoppe | T. Bhatta | L. Darroch | J. Echevers | D. Fairbank | A. Iverson | A. Larson | T. McElroy | O. Nusair | J. Todd | T. Totev | Q. Xia | P. Breur | E. Brown | A. Fieguth | M. Murra | I. Arnquist | J. Brodsky | S. Sangiorgio | M. L. di Vacri | S. Triambak | C. Hardy | A. Robinson | L. Yang | K. Leach | C. Natzke | J. Bane | K. Harouaka | J. Nattress | R. J. Newby | G. S. Ortega | A. House | D. Chernyak | F. Vachon | G. Gallina | A. De St. Croix | N. Massacret | S. Ferrara | R. Lindsay | C. Overman | L. Althueser | K. Odgers | B. Chana | M. Chiu | M. Elbeltagi | T. Rossignol | C. Vivo-Vilches | M. Walent | J. N. Nzobadila Ondze | D. Beck | K. Deslandes | G. Adhikari | S. Thibado | C. Huhmann | J. Orrell | J. Schneider | S.X. Wu | A. Gorham | P. Martel-Dion | G. J. Ramonnye | H. Rasiwala | A. Tidball | V. Veeraraghavan | R. MacLellan | C. Gingras | F. Spadoni | C. Richard | M. Medina Peregrina | K.S. Kumar | J. Nzobadila Ondze | A. Soma

[1]  Sanjeev J. Koppal,et al.  Lambertian Reflectance , 2020, Computer Vision, A Reference Guide.

[2]  G. Borghi,et al.  FBK VUV-sensitive Silicon Photomultipliers for cryogenic temperatures , 2020 .

[3]  M. Misiaszek,et al.  Final Results of GERDA on the Search for Neutrinoless Double-β Decay. , 2020, Physical review letters.

[4]  C. Weinheimer,et al.  VUV Transmission of PTFE for xenon-based particle detectors , 2020, Journal of Instrumentation.

[5]  P. T. Surukuchi,et al.  Improved Limit on Neutrinoless Double-Beta Decay in ^{130} Te with CUORE. , 2019, Physical review letters.

[6]  A. K. Soma,et al.  Reflectance of Silicon Photomultipliers at Vacuum Ultraviolet Wavelengths , 2019, IEEE Transactions on Nuclear Science.

[7]  A. K. Soma,et al.  Reflectivity and PDE of VUV4 Hamamatsu SiPMs in liquid xenon , 2019, Journal of Instrumentation.

[8]  A. K. Soma,et al.  Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. , 2019, Physical review letters.

[9]  Y. H. Lin,et al.  Characterization of the Hamamatsu VUV4 MPPCs for nEXO , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[10]  A. K. Soma,et al.  Study of silicon photomultiplier performance in external electric fields , 2018, Journal of Instrumentation.

[11]  Y. H. Lin,et al.  VUV-Sensitive Silicon Photomultipliers for Xenon Scintillation Light Detection in nEXO , 2018, IEEE Transactions on Nuclear Science.

[12]  T. Tsang,et al.  nEXO Pre-Conceptual Design Report , 2018, 1805.11142.

[13]  A. K. Soma,et al.  Characterization of an Ionization Readout Tile for nEXO , 2017, 1710.05109.

[14]  Y. H. Lin,et al.  Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double- β decay , 2017, Physical Review C.

[15]  S. Parlati,et al.  The XENON1T dark matter experiment , 2017, The European Physical Journal C.

[16]  C. Licciardi,et al.  An optimal energy estimator to reduce correlated noise for the EXO-200 light readout , 2016, 1605.06552.

[17]  M. Decowski,et al.  Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. , 2016, Physical review letters.

[18]  K. Bokeloh Calibration of hot and cold dark matter experiments , 2016 .

[19]  Kiwamu Saito,et al.  High-accuracy measurement of the emission spectrum of liquid xenon in the vacuum ultraviolet region , 2015 .

[20]  F. Retiere,et al.  Characterization of Silicon Photomultipliers for nEXO , 2015, IEEE Transactions on Nuclear Science.

[21]  J. Nikkel,et al.  Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon , 2015, 1502.04213.

[22]  M. Auger,et al.  The EXO-200 detector, part I: detector design and construction , 2012, 1202.2192.

[23]  D. R. Artusa,et al.  Sensitivity and Discovery Potential of CUORE to Neutrinoless Double-Beta Decay , 2011, 1109.0494.

[24]  M. Sorel,et al.  The Search for neutrinoless double beta decay , 2011, 1109.5515.

[25]  D. Tosi,et al.  Observation of two-neutrino double-beta decay in 136Xe with the EXO-200 detector. , 2011, Physical review letters.

[26]  R. C. Barber,et al.  Q value for the double-{beta} decay of {sup 136}Xe , 2010 .

[27]  P. Fierlinger,et al.  Characterization of large area APDs for the EXO-200 detector , 2009, 0906.2499.

[28]  M. Lopes,et al.  New approach to the calculation of the refractive index of liquid and solid xenon. , 2005, The Journal of chemical physics.

[29]  Andrea Pocar The EXO-200 detector , 2005 .

[30]  M. I. Lopes,et al.  Measurement of the refractive index and attenuation length of liquid xenon for its scintillation light , 2003, physics/0307044.

[31]  A. Grebenuk,et al.  Measurement of the refractive index of liquid xenon for intrinsic scintillation light , 1996 .

[32]  M. I. Lopes,et al.  Purification of liquid xenon and impurity monitoring for a PET detector , 1994 .

[33]  José W. F. Valle,et al.  Neutrinoless Double beta Decay in SU(2) x U(1) Theories , 1982 .

[34]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[35]  Y. H. Lin,et al.  Search for Neutrinoless Double-Beta Decay with the Dataset , 2019 .

[36]  C. Levy Light Propagation and Reflection off Teflon in Liquid Xenon Detectors for the XENON100 and XENON1T Dark Matter Experiment , 2014 .

[37]  R. C. Barber,et al.  Q value for the double-β decay of 136Xe , 2010 .

[38]  E. G. Myers,et al.  Mass and double-beta-decay Q value of 136Xe. , 2007, Physical review letters.

[39]  R. Mirzoyan,et al.  The Potential of SiPM as Photon Detector in Astroparticle Physics Experiments like MAGIC and EUSO , 2006 .

[40]  I K Gollish,et al.  Index of refraction. , 1989, The CLAO journal : official publication of the Contact Lens Association of Ophthalmologists, Inc.