Fractional Kelly Strategies in Continuous Time: Recent Developments

The Kelly criterion and fractional Kelly strategies hold an important place in investment management theory and practice. Both the Kelly criterion and fractional Kelly strategies, e.g. invest a fraction f of one’s wealth in the Kelly portfolio and a proportion 1 − f in the risk-free asset, are optimal in the continuous time setting of the Merton [33] model. However, fractional Kelly strategies are no longer optimal when the basic assumptions of the Merton model, such as the lognormality of asset prices, are removed. In this chapter, we present an overview of some recent developments related to Kelly investment strategies in an incomplete market environment where asset prices are not lognormally distributed. We show how the definition of fractional Kelly strategies can be extended to guarantee optimality. The key idea is to get the definition of fractional Kelly strategies to coincide with the fund separation theorem related to the problem at hand. In these instances, fractional Kelly investment strategies appear as the natural solution for investors seeking to maximize the terminal power utility of their wealth.

[1]  Najmeh Salehi,et al.  Risk Sensitive Intertemporal CAPM , 2013 .

[2]  Bruno Bouchard,et al.  Weak Dynamic Programming Principle for Viscosity Solutions , 2011, SIAM J. Control. Optim..

[3]  E. Thorp,et al.  The Kelly Capital Growth Investment Criterion: Theory and Practice , 2011 .

[4]  Sébastien Lleo,et al.  Jump-Diffusion Risk-Sensitive Asset Management I: Diffusion Factor Model , 2010, SIAM J. Financial Math..

[5]  Fractional Kelly Strategies for Benchmarked Asset Management , 2011 .

[6]  William T. Ziemba,et al.  Long-term capital growth: the good and bad properties of the Kelly and fractional Kelly capital growth criteria , 2010 .

[7]  T. R. Hurd,et al.  Portfolio choice with jumps: A closed-form solution , 2009, 0906.2324.

[8]  Mark H. A. Davis,et al.  Risk-sensitive benchmarked asset management , 2008 .

[9]  G. Barles,et al.  Second-order elliptic integro-differential equations: viscosity solutions' theory revisited , 2007, math/0702263.

[10]  E. Thorp The Kelly Criterion in Blackjack Sports Betting, and the Stock Market , 2008 .

[11]  Rachel E. S. Ziemba,et al.  Scenarios for Risk Management and Global Investment Strategies , 2007 .

[12]  D. Heath,et al.  A Benchmark Approach to Quantitative Finance , 2006 .

[13]  William T. Ziemba,et al.  The Symmetric Downside-Risk Sharpe Ratio , 2005 .

[14]  W. Poundstone Fortune's Formula: The Untold Story of the Scientific Betting System That Beat the Casinos and Wall Street , 2005 .

[15]  William T. Ziemba,et al.  Time to wealth goals in capital accumulation , 2005 .

[16]  David Heath,et al.  Local volatility function models under a benchmark approach , 2006 .

[17]  Eckhard Platen,et al.  A BENCHMARK APPROACH TO FINANCE , 2006 .

[18]  W. Ziemba,et al.  Capital growth with security , 2004 .

[19]  Sanjiv Ranjan Das,et al.  Systemic Risk and International Portfolio Choice , 2002 .

[20]  H. Nagai,et al.  Risk-sensitive portfolio optimization on infinite time horizon , 2002 .

[21]  Dirk Becherer The numeraire portfolio for unbounded semimartingales , 2001, Finance Stochastics.

[22]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[23]  S. Pliska,et al.  Risk-Sensitive Dynamic Asset Management , 1999 .

[24]  W. Ziemba,et al.  Growth versus security in dynamic investment analysis , 1992 .

[25]  John B. Long The numeraire portfolio , 1990 .

[26]  B. Øksendal Stochastic Differential Equations , 1985 .

[27]  G. Kallianpur Stochastic differential equations and diffusion processes , 1981 .

[28]  P. Samuelson Why we should not make mean log of wealth big though years to act are long , 1979 .

[29]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[30]  H. Markowitz Investment for the Long Run: New Evidence for an Old Rule , 1976 .

[31]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[32]  E. Thorp Portfolio Choice and the Kelly Criterion , 1975 .

[33]  R. C. Merton,et al.  AN INTERTEMPORAL CAPITAL ASSET PRICING MODEL , 1973 .

[34]  R. C. Merton,et al.  Optimum consumption and portfolio rules in a continuous - time model Journal of Economic Theory 3 , 1971 .

[35]  P. Samuelson The "fallacy" of maximizing the geometric mean in long sequences of investing or gambling. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[36]  P. Samuelson LIFETIME PORTFOLIO SELECTION BY DYNAMIC STOCHASTIC PROGRAMMING , 1969 .

[37]  W. Wonham On the Separation Theorem of Stochastic Control , 1968 .

[38]  R. Bellman Dynamic Programming , 1957, Science.

[39]  Michel Loève,et al.  Probability Theory I , 1977 .

[40]  H. Latané Criteria for Choice Among Risky Ventures , 1959, Journal of Political Economy.

[41]  D. Bernoulli Exposition of a New Theory on the Measurement of Risk , 1954 .