Evaluation of parallel milliliter-scale stirred-tank bioreactors for the study of biphasic whole-cell biocatalysis with ionic liquids.

[1]  Dirk Weuster-Botz,et al.  Recycling of the ionic liquid phase in process integrated biphasic whole-cell biocatalysis , 2011 .

[2]  D. Weuster‐Botz,et al.  Process performance of parallel bioreactors for batch cultivation of Streptomyces tendae , 2011, Bioprocess and biosystems engineering.

[3]  D. Weuster‐Botz,et al.  Growth and recombinant protein expression with Escherichia coli in different batch cultivation media , 2011, Applied Microbiology and Biotechnology.

[4]  A. Kondo,et al.  Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids , 2010 .

[5]  D. Weuster‐Botz,et al.  Power consumption and maximum energy dissipation in a milliliter‐scale bioreactor , 2009, Biotechnology progress.

[6]  Dirk Weuster-Botz,et al.  Milliliter-scale stirred tank reactors for the cultivation of microorganisms. , 2010, Advances in applied microbiology.

[7]  D. Weuster‐Botz,et al.  Whole-cell biocatalysis: Evaluation of new hydrophobic ionic liquids for efficient asymmetric reduction of prochiral ketones , 2009 .

[8]  M. Zong,et al.  Biocatalytic anti-Prelog stereoselective reduction of 4′-methoxyacetophenone to (R)-1-(4-methoxyphenyl)ethanol with immobilized Trigonopsis variabilis AS2.1611 cells using an ionic liquid-containing medium , 2009 .

[9]  Dirk Weuster-Botz,et al.  Discrimination of riboflavin producing Bacillus subtilis strains based on their fed-batch process performances on a millilitre scale , 2009, Applied Microbiology and Biotechnology.

[10]  Pu Wang,et al.  Microbial reduction of ethyl acetoacetate to ethyl (R)-3-hydroxybutyrate in an ionic liquid containing system , 2009 .

[11]  M. Zong,et al.  Use of an ionic liquid to improve asymmetric reduction of 4′-methoxyacetophenone catalyzed by immobilized Rhodotorula sp. AS2.2241 cells , 2009 .

[12]  B. Nidetzky,et al.  Microbial Cell Factories , 2020, Microbial Systematics.

[13]  Yun Fang,et al.  Effect of ionic liquid [BMIM][PF6] on asymmetric reduction of ethyl 2-oxo-4-phenylbutyrate by Saccharomyces cerevisiae , 2008, Journal of Industrial Microbiology & Biotechnology.

[14]  R. Goodacre,et al.  Using a biphasic ionic liquid/water reaction system to improve oxygenase-catalysed biotransformation with whole cells , 2008 .

[15]  Christian Krause,et al.  Fully automated single-use stirred-tank bioreactors for parallel microbial cultivations , 2008, Bioprocess and biosystems engineering.

[16]  D. Weuster‐Botz,et al.  Asymmetric whole cell biotransformations in biphasic ionic liquid/water-systems by use of recombinant Escherichia coli with intracellular cofactor regeneration , 2007 .

[17]  S. Lütz,et al.  Process Intensification for Substrate-Coupled Whole Cell Ketone Reduction by In Situ Acetone Removal , 2007 .

[18]  Dirk Weuster-Botz,et al.  Scale-down and parallel operation of the riboflavin production process with Bacillus subtilis , 2007 .

[19]  G. Lye,et al.  The bioreduction of a β-tetralone to its corresponding alcohol by the yeast Trichosporon capitatum MY1890 and bacterium Rhodococcus erythropolis MA7213 in a range of ionic liquids , 2007 .

[20]  Dick B Janssen,et al.  Biocatalysis by dehalogenating enzymes. , 2007, Advances in applied microbiology.

[21]  Y. Shotland,et al.  Baker’s yeast catalyzed asymmetric reduction in glycerol , 2006 .

[22]  D. Weuster‐Botz,et al.  Water immiscible ionic liquids as solvents for whole cell biocatalysis. , 2006, Journal of biotechnology.

[23]  M. Zong,et al.  Use of ionic liquids to improve whole-cell biocatalytic asymmetric reduction of acetyltrimethylsilane for efficient synthesis of enantiopure (S)-1-trimethylsilylethanol , 2006 .

[24]  Marco W Fraaije,et al.  Occurrence and biocatalytic potential of carbohydrate oxidases. , 2006, Advances in applied microbiology.

[25]  Dirk Weuster-Botz,et al.  Methods and milliliter scale devices for high-throughput bioprocess design , 2005, Bioprocess and biosystems engineering.

[26]  D Weuster-Botz,et al.  Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). , 2005, Biotechnology and bioengineering.

[27]  J. Gardiner,et al.  Hydrogenation of C–C double bonds in an ionic liquid reaction system using the obligate anaerobe, Sporomusa termitida , 2005, Biotechnology Letters.

[28]  Dirk Weuster-Botz,et al.  Efficient whole-cell biotransformation in a biphasic ionic liquid/water system. , 2004, Angewandte Chemie.

[29]  Jochen Büchs,et al.  Impact of out-of-phase conditions on screening results in shaking flask experiments , 2004 .

[30]  Maya Amidjojo Reaktionstechnische Untersuchungen zur asymmetrischen Synthese von chiralen Alkoholen mit Lactobacillus kefir , 2004 .

[31]  Dirk Weuster-Botz,et al.  Parallel-operated stirred-columns for microbial process development , 2002 .

[32]  J Büchs,et al.  Out-of-phase operating conditions, a hitherto unknown phenomenon in shaking bioreactors. , 2001, Biochemical engineering journal.

[33]  K. R. Seddon,et al.  Polarity study of some 1‐alkyl‐3‐methylimidazolium ambient‐temperature ionic liquids with the solvatochromic dye, Nile Red , 2000 .

[34]  G J Lye,et al.  Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. , 2000, Biotechnology and bioengineering.

[35]  J. Büchs,et al.  Power consumption in shaking flasks on rotary shaking machines: II. Nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. , 2000, Biotechnology and bioengineering.

[36]  S. Saito,et al.  EFFECT OF DISPERSED-PHASE VISCOSITY ON THE MAXIMUM STABLE DROP SIZE FOR BREAKUP IN TURBULENT FLOW , 1977 .

[37]  J. Hinze Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes , 1955 .