Design of Marx generators as a structured eigenvalue assignment

We consider the design problem for a Marx generator electrical network, a pulsed power generator. We show that the components design can be conveniently cast as a structured real eigenvalue assignment with significantly lower dimension than the state size of the Marx circuit. Then we present two possible approaches to determine its solutions. A first symbolic approach consists in the use of Grobner basis representations, which allows us to compute all the (finitely many) solutions. A second approach is based on convexification of a nonconvex optimization problem with polynomial constraints. We also comment on the conjecture that for any number of stages the problem has finitely many solutions, which is a necessary assumption for the proposed methods to converge. We regard the proof of this conjecture as an interesting challenge of general interest in the real algebraic geometry field.

[1]  W. J. Carey,et al.  Marx generator design and performance , 2002, Conference Record of the Twenty-Fifth International Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop..

[2]  J. Lasserre,et al.  Detecting global optimality and extracting solutions in GloptiPoly , 2003 .

[3]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[4]  Monique Laurent,et al.  Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals , 2008, Found. Comput. Math..

[5]  M. Kristiansen,et al.  Pulsed Power Systems , 2013 .

[6]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[7]  H. Bluhm Pulsed Power Systems: Principles and Applications , 2006 .

[8]  E. Schamiloglu,et al.  A control theory approach on the design of a Marx generator network , 2009, 2009 IEEE Pulsed Power Conference.

[9]  Zhong Du,et al.  Elimination of harmonics in a multilevel converter using the theory of symmetric polynomials and resultants , 2005, IEEE Transactions on Control Systems Technology.

[10]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[11]  J. Lasserre,et al.  Solving nonconvex optimization problems , 2004, IEEE Control Systems.

[12]  A. Ivic Sums of squares , 2020, An Introduction to 𝑞-analysis.

[13]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[14]  Andrei Gabrielov,et al.  Pole Placement by Static Output Feedback for Generic Linear Systems , 2002, SIAM J. Control. Optim..

[15]  Gene H. Golub,et al.  Matrix computations , 1983 .

[16]  O. Taussky Sums of Squares , 1970 .

[17]  C Jerald Buchenauer Optimizing Compact Marx Generator Networks , 2010, IEEE Transactions on Plasma Science.

[18]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[19]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[20]  Andrei Gabrielov,et al.  Counterexamples to pole placement by static output feedback , 2002 .

[21]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[22]  Jonathan D. Hauenstein,et al.  Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .

[23]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[24]  Joachim Rosenthal,et al.  Open problems in the area of pole placement , 1999 .

[25]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[26]  J. Lasserre,et al.  Optimisation globale et théorie des moments , 2000 .

[27]  Moody T. Chu,et al.  Inverse Eigenvalue Problems , 1998, SIAM Rev..

[28]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[29]  G. Golub,et al.  Inverse Eigenvalue Problems: Theory, Algorithms, and Applications , 2005 .

[30]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[31]  P. Rostalski,et al.  Semidefinite characterization and computation of real radical ideals , 2006 .

[32]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[33]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[34]  Frank Sottile,et al.  Real Solutions to Equations from Geometry , 2006, University lecture series.

[35]  Akiko Takeda,et al.  PHoM – a Polyhedral Homotopy Continuation Method for Polynomial Systems , 2004, Computing.

[36]  Xiaochang A. Wang,et al.  Decentralized Pole Assignment and Product Grassmannians , 1994 .

[37]  B. Sturmfels SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[38]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[39]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .