Border Collision bifurcations in 1D PWL Map with One Discontinuity and Negative Jump: Use of the First Return Map

The aim of this work is to study discontinuous one-dimensional maps in the case of slopes and offsets having opposite signs. Such models represent the dynamics of applied systems in several disciplines. We analyze in particular attracting cycles, their border collision bifurcations and the properties of the periodicity regions in the parameter space. The peculiarity of this family is that we can make use of the technical instrument of the first return map. With this, we can rigorously prove properties which were known numerically, as well as prove new ones, giving a complete characterization of the overlapping periodicity regions.

[1]  Gábor Stépán,et al.  Dynamics of Piecewise Linear Discontinuous Maps , 2004, Int. J. Bifurc. Chaos.

[2]  Michael Schanz,et al.  On the fully developed bandcount adding scenario , 2008 .

[3]  Celso Grebogi,et al.  Border collision bifurcations in two-dimensional piecewise smooth maps , 1998, chao-dyn/9808016.

[4]  G. Verghese,et al.  Nonlinear phenomena in power electronics : attractors, bifurcations, chaos, and nonlinear control , 2001 .

[5]  Erik Mosekilde,et al.  Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .

[6]  Erik Mosekilde,et al.  Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems: Applications to Power Converters, Relay and Pulse-Width Modulated Control Systems, and Human Decision-Making Behavior , 2003 .

[7]  Michael Schanz,et al.  On multi-parametric bifurcations in a scalar piecewise-linear map , 2006 .

[8]  Volodymyr L. Maistrenko,et al.  On period-adding sequences of attracting cycles in piecewise linear maps , 1998 .

[9]  James A. Yorke,et al.  Border-collision bifurcations including “period two to period three” for piecewise smooth systems , 1992 .

[10]  Leon O. Chua,et al.  BIFURCATIONS OF ATTRACTING CYCLES FROM TIME-DELAYED CHUA’S CIRCUIT , 1995 .

[11]  George C. Verghese,et al.  Nonlinear Phenomena in Power Electronics , 2001 .

[12]  Michael Schanz,et al.  On detection of multi-band chaotic attractors , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Michael Schanz,et al.  On a special type of border-collision bifurcations occurring at infinity , 2010 .

[14]  Michael Schanz,et al.  The bandcount increment scenario. II. Interior structures , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Soumitro Banerjee,et al.  Robust Chaos , 1998, chao-dyn/9803001.

[16]  Celso Grebogi,et al.  Two-dimensional map for impact oscillator with drift. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Laura Gardini,et al.  BISTABILITY AND BORDER-COLLISION BIFURCATIONS FOR A FAMILY OF UNIMODAL PIECEWISE SMOOTH MAPS , 2005 .

[18]  Ekaterina Pavlovskaia,et al.  Low-dimensional maps for piecewise smooth oscillators , 2007 .

[19]  Character of the map for switched dynamical systems for observations on the switching manifold , 2008 .

[20]  Michael Schanz,et al.  The bandcount increment scenario. I. Basic structures , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Mario di Bernardo,et al.  C-bifurcations and period-adding in one-dimensional piecewise-smooth maps , 2003 .

[22]  Michael Schanz,et al.  The bandcount increment scenario. III. Deformed structures , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Laura Gardini,et al.  Degenerate bifurcations and Border Collisions in Piecewise Smooth 1D and 2D Maps , 2010, Int. J. Bifurc. Chaos.

[24]  Michael Schanz,et al.  Calculation of bifurcation Curves by Map Replacement , 2010, Int. J. Bifurc. Chaos.

[25]  Leon O. Chua,et al.  Cycles of Chaotic Intervals in a Time-delayed Chua's Circuit , 1993, Chua's Circuit.

[26]  Michael Schanz,et al.  Self-similarity of the bandcount adding structures: Calculation by map replacement , 2010 .

[27]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[28]  James A. Yorke,et al.  BORDER-COLLISION BIFURCATIONS FOR PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS , 1995 .

[29]  Michael Schanz,et al.  Period-Doubling Scenario without flip bifurcations in a One-Dimensional Map , 2005, Int. J. Bifurc. Chaos.

[30]  Ekaterina Pavlovskaia,et al.  Experimental study of impact oscillator with one-sided elastic constraint , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Laura Gardini,et al.  Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: Border-collision bifurcation curves , 2006 .

[32]  Ott,et al.  Border-collision bifurcations: An explanation for observed bifurcation phenomena. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  Stephen John Hogan,et al.  Local Analysis of C-bifurcations in n-dimensional piecewise smooth dynamical systems , 1999 .

[34]  Michael Schanz,et al.  Border-Collision bifurcations in 1D Piecewise-Linear Maps and Leonov's Approach , 2010, Int. J. Bifurc. Chaos.

[35]  C. Mira,et al.  Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .

[36]  J. Yorke,et al.  Bifurcations in one-dimensional piecewise smooth maps-theory and applications in switching circuits , 2000 .

[37]  Michael Schanz,et al.  Multi-parametric bifurcations in a piecewise–linear discontinuous map , 2006 .

[38]  Volodymyr L. Maistrenko,et al.  Bifurcations of attracting cycles of piecewise linear interval maps , 1996 .