Structural and electronic transitions in polyaniline: A Fourier transform infrared spectroscopic study

Fourier transform infrared (FTIR) spectroscopic studies are carried out on different, potentiometric well defined oxidation states of polyaniline in aqueous acidic and organic electrolytes. During the oxidation process ring structures transform from benzenoid into quinoid states. The fully reduced state of polyaniline shows differences in the anion contents in acidic and organic electrolytes. The 400 mV vs saturated calomel electrode (SCE) oxidized state has the maximum number of the intercalated anions in aqueous acidic media in accordance with supporting potentiometric titration experiments. This conducting form of polyaniline shows similar FTIR spectra in organic as well as in acidic media. For the oxidized state at 800 mV vs SCE, a deintercalation of anions in aqueous acidic, or further intercalation in organic electrolyte is observed. Beyond 800 mV vs SCE, polyaniline shows degradation processes in aqueous acidic media which are found to proceed via formation of benzoquinone‐like structures and final...

[1]  N. S. Sariciftci,et al.  Analysis of various doping mechanisms in polyaniline by optical, FTIR and Raman spectroscopy , 1989 .

[2]  N. S. Sariciftci,et al.  Optical spectroscopy and resonance Raman scattering of polyaniline during electrochemical oxidation and reduction , 1987 .

[3]  Arthur J. Epstein,et al.  Polyaniline: non-oxidative doping of the emeraldine base form to the metallic regime , 1987 .

[4]  E. Geniés,et al.  Secondary organic batteries made with thick free standing films of electrochemically prepared polyaniline , 1989 .

[5]  E. Geniés,et al.  A rechargeable battery of the type polyaniline/propylene carbonate-LiClO4/Li-Al , 1988 .

[6]  A. Epstein,et al.  Polyaniline: Solutions, Films and Oxidation State , 1988 .

[7]  E. Vieil,et al.  Theoretical charge and conductivity ‘state - diagrams’ for polyaniline versus potential and pH , 1987 .

[8]  A. Syed,et al.  Resonance Raman Scattering from Polyaniline , 1985 .

[9]  Yong Cao,et al.  Spectroscopic and electrical characterization of some aniline oligomers and polyaniline , 1986 .

[10]  Fumio Goto,et al.  Electrochemical studies of polyaniline and its application , 1987 .

[11]  A. Epstein,et al.  Protonation of Emeraldine: Formation of a Granular Polaronic Polymeric Metal , 1988 .

[12]  A. Epstein,et al.  Frequency Dependent Conductivity of Emeraldine: Absence of Protonic Conductivity , 1988 .

[13]  N. S. Sariciftci,et al.  In situ FTIR measurements of polyaniline in the non-metallic phase , 1989 .

[14]  J. Travers,et al.  Investigation on the structure of polyaniline: 13C n.m.r. and titration studies , 1988 .

[15]  R. Baughman,et al.  Secondary batteries with electroactive polymer electrodes , 1987 .

[16]  W. Fosong,et al.  Large-scale polyaniline batteries , 1988 .

[17]  Wu-Song Huang,et al.  Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes , 1986 .

[18]  D. Buttry,et al.  Determination of ion populations and solvent content as functions of redox state and pH in polyaniline , 1987 .

[19]  R. Baughman,et al.  The structure of a novel polymeric metal: Acceptor-doped polyaniline , 1988 .

[20]  A. F. Richter,et al.  Polyaniline: a new concept in conducting polymers , 1987 .

[21]  M. Lapkowski,et al.  Application of the electronic conducting polymers as sensors: Polyaniline in the solid state for detection of solvent vapours and polypyrrole for detection of biological ions in solutions , 1989 .

[22]  C. S. Park,et al.  Thermopower and conductivity of metallic polyaniline , 1987 .

[23]  J. Pernaut,et al.  Electrochemical and spectroelectrochemical studies of polypyrrole and polyaniline , 1985 .

[24]  S. Stafströma Electronic Properties of Polyaniline , 1987 .

[25]  L. Yu,et al.  Electrochemical chains using protolytic organic semiconductors , 1968 .

[26]  Su-Moon Park,et al.  Electrochemistry of Conductive Polymers III . Some Physical and Electrochemical Properties Observed from Electrochemically Grown Polyaniline , 1988 .

[27]  Hideo Tamura,et al.  Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes , 1984 .

[28]  Alan G. MacDiarmid,et al.  Polyaniline: Electrochemistry and application to rechargeable batteries , 1987 .

[29]  J. Travers,et al.  Water effects in polyaniline: A new conduction process , 1987 .

[30]  Su-Moon Park,et al.  Electrochemistry of conductive polymers. IV: Electrochemical studies on polyaniline degradation ― product identification and coulometric studies , 1988 .

[31]  J. Brédas Electronic and Nonlinear Optical Properties of Conjugated Polymers: A Quantum Chemistry Approach , 1987 .

[32]  N. Oyama,et al.  IR absorption spectroscopic identification of electroactive and electroinactive polyaniline films prepared by the electrochemical polymerization of aniline , 1984 .

[33]  J. A. Logan,et al.  Electroactive polyaniline films , 1980 .

[34]  A. F. Richter,et al.  Insulator-to-metal transition in polyaniline , 1987 .

[35]  Yukio Furukawa,et al.  Vibrational Spectra and Structure of Polyaniline , 1988 .

[36]  Y. H. Kim,et al.  Localized charged excitations in polyaniline: Infrared photoexcitation and protonation studies , 1989 .

[37]  A. Syed,et al.  Electrochemical Study Of Polyaniline In Aqueous And Organic Medium. Redox And Kinetic Properties. , 1985 .

[38]  I. Harada,et al.  Vibrational spectra of polyaniline and its 15N- and 2H-substituted derivatives in as-polymerized, alkali-treated and reduced states , 1986 .

[39]  H. Letheby XXIX.—On the production of a blue substance by the electrolysis of sulphate of aniline , 1862 .

[40]  T. Hjertberg,et al.  Geometry of polyaniline , 1986 .

[41]  N. S. Sariciftci,et al.  In situ FTIR Spectroscopy of Polyaniline , 1987 .

[42]  Sariciftci,et al.  Evidence for two separate doping mechanisms in the polyaniline system. , 1988, Physical review letters.

[43]  J. Travers,et al.  On the nature of the conducting state of polyaniline , 1989 .

[44]  W. R. Salaneck,et al.  Spectroscopic Characterization of Some Polyanilines , 1985 .

[45]  Huang,et al.  Polaron lattice in highly conducting polyaniline: Theoretical and optical studies. , 1987, Physical review letters.

[46]  Jinsong Tang,et al.  Infrared spectra of soluble polyaniline , 1988 .

[47]  R. Baughman,et al.  Structure and properties of polyaniline as modeled by single‐crystal oligomers , 1988 .

[48]  N. S. Sariciftci,et al.  Spectroscopic Studies on the Electrochemical Doping of Polyaniline: Quantum Size Effects on the Metallic State , 1989 .

[49]  Kazuo Sasaki,et al.  ECD materials for the three primary colors developed by polyanilines , 1986 .

[50]  N. S. Sariciftci,et al.  In situ spectro-electrochemical studies of polyaniline , 1987 .

[51]  U. Kreibig,et al.  Dielectric function and infrared absorption of small metal particles , 1980 .

[52]  N. S. Sariciftci,et al.  Polaron-Induced Resonance Raman Scattering in Polyaniline , 1989 .

[53]  Isao Taniguchi,et al.  Photoelectrochemical reduction of carbon dioxide using polyaniline-coated silicon , 1983 .

[54]  A. Monkman,et al.  Spectroscopic studies of polyaniline , 1987 .

[55]  Sze‐cheng Yang,et al.  Influence of oxidation and protonation on the electrical conductivity of polyaniline , 1987 .

[56]  Hideo Tamura,et al.  Polyaniline film-coated electrodes as electrochromic display devices , 1984 .

[57]  A. F. Richter,et al.  Insulator-to-metal transition in polyaniline , 1987 .

[58]  S. Glarum,et al.  The In Situ ESR and Electrochemical Behavior of Poly(aniline) Electrode Films , 1987 .

[59]  I. Harada,et al.  Vibrational spectra and structure of polyaniline and related compounds , 1989 .

[60]  J. Brédas,et al.  Evolution of structure and electronic properties in oxidized polyaniline as a function of the torsion angle between adjacent rings , 1986 .

[61]  E. Geniés,et al.  Redox mechanism and electrochemical behaviour or polyaniline deposits , 1985 .

[62]  Antonio J. Ricco,et al.  Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices , 1985 .