On Modeling Three-Dimensional Estuarine and Marine Hydrodynamics

Abstract Recent advances of a three-dimensional numerical model of estuarine and marine hydrodynamics are described in this paper. In particular, the parameterization of the vertical turbulent transport based on a Reynolds stress model and the adaptation of a generalized curvilinear (or “boundary-fitted”) grid to the finite-difference model are highlighted. These two aspects of the three-dimensional numerical model, along with other features, allow accurate simulation of turbulent flows in estuarine and marine waters where complex geometry and bathymetry are generally present.