Codes Over a Subset of Octonion Integers

In this paper, we define codes over a subset of Octonion integers. We prove that, under certain circumstances, these codes can correct up to two errors for a transmitted vector and the code rate of the codes is greater than the code rate of the codes defined on Quaternion integers.

[1]  Klaus Huber Codes over Gaussian integers , 1994, IEEE Trans. Inf. Theory.

[2]  R. D. Schafer An Introduction to Nonassociative Algebras , 1966 .

[3]  David Burton Elementary Number Theory , 1976 .

[4]  Chaoping Xing,et al.  Coding Theory: Index , 2004 .

[5]  Underwood Dudley Elementary Number Theory , 1978 .

[6]  S. Nishimura,et al.  A generalization of the Lee distance and error correcting codes , 2008, Discret. Appl. Math..

[7]  Ramón Beivide,et al.  Perfect Codes From Cayley Graphs Over Lipschitz Integers , 2009, IEEE Transactions on Information Theory.

[8]  Giuliana P. Davidoff,et al.  Elementary number theory, group theory, and Ramanujan graphs , 2003 .

[9]  John H. Conway,et al.  On Quaternions and Octonions , 2003 .

[10]  Reginaldo Palazzo Júnior,et al.  Lattice constellations and codes from quadratic number fields , 2001, IEEE Transactions on Information Theory.

[11]  D. Savin About Some Split Central Simple Algebras , 2014, 1403.3443.

[12]  Hristo Kostadinov,et al.  Soft Decoding of Integer Codes and Their Application to Coded Modulation , 2010, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[13]  Eliseo Sarmiento Rosales,et al.  Parameterized Codes over Cycles , 2013 .

[14]  Josep Rifà Groups of complex integers used as QAM signals , 1995, IEEE Trans. Inf. Theory.

[15]  Chaoping Xing,et al.  Coding Theory: A First Course , 2004 .

[16]  David A. Cox Primes of the Form x2 + ny2: Fermat, Class Field Theory, and Complex Multiplication , 1989 .

[17]  John Wayland Bales A Tree for Computing the Cayley-Dickson Twist , 2009 .

[18]  Murat Güzeltepe Codes over Hurwitz integers , 2013 .