White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional...

[1]  W. Chang,et al.  The inductance of a superconducting strip transmission line , 1979 .

[2]  Stafford Withington,et al.  Superconducting kinetic inductance detectors for astrophysics , 2007 .

[3]  H. Hoevers,et al.  Single Pixel Characterization of X-Ray TES Microcalorimeter Under AC Bias at MHz Frequencies , 2013, IEEE Transactions on Applied Superconductivity.

[4]  Adrian T. Lee,et al.  Invited article: millimeter-wave bolometer array receiver for the Atacama pathfinder experiment Sunyaev-Zel'dovich (APEX-SZ) instrument. , 2010, The Review of scientific instruments.

[5]  Kent D. Irwin,et al.  Demonstration of a multiplexer of dissipationless superconducting quantum interference devices , 2008 .

[6]  S. R. Bandler,et al.  Performance of TES X-ray Microcalorimeters with a Novel Absorber Design , 2008 .

[7]  N. Llombart,et al.  Operation of a titanium nitride superconducting microresonator detector in the nonlinear regime , 2013, 1305.4281.

[8]  D. Mattis,et al.  Theory of the anomalous skin effect in normal and superconducting metals , 1958 .

[9]  Kent D. Irwin,et al.  Flux-Ramp Modulation for SQUID Multiplexing , 2012 .

[10]  R. Barends,et al.  Niobium and Tantalum High Q Resonators for Photon Detectors , 2007, IEEE Transactions on Applied Superconductivity.

[11]  K. D. Irwin,et al.  A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics , 2012, 1208.0871.

[12]  Kent D. Irwin,et al.  Digital readouts for large microwave low-temperature detector arrays , 2006 .

[13]  B. Alpert,et al.  A high resolution gamma-ray spectrometer based on superconducting microcalorimeters. , 2012, The Review of scientific instruments.

[14]  John M. Martinis,et al.  A semiempirical model for two-level system noise in superconducting microresonators , 2008 .

[15]  H. Leduc,et al.  A wideband, low-noise superconducting amplifier with high dynamic range , 2012, Nature Physics.

[16]  Adrian T. Lee,et al.  Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors , 2001 .

[17]  Takahiro Yamada,et al.  NbN-Based Overdamped Josephson Junctions for Quantum Voltage Standards , 2012, IEICE Trans. Electron..

[18]  Arttu Luukanen,et al.  A superconducting antenna-coupled hot-spot microbolometer , 2003 .

[19]  W. B. Doriese,et al.  Table-top ultrafast x-ray microcalorimeter spectrometry for molecular structure. , 2013, Physical review letters.

[20]  Jonas Zmuidzinas,et al.  Superconducting Microresonators: Physics and Applications , 2012 .

[21]  P. D. de Korte,et al.  Superconducting LC Filter Circuits for Frequency Division Multiplexed Readout of TES Detectors , 2011, IEEE Transactions on Applied Superconductivity.

[22]  Shogo Kiryu,et al.  Superconducting properties and normal‐state resistivity of single‐crystal NbN films prepared by a reactive rf‐magnetron sputtering method , 1992 .

[23]  M. Ketchen Design of improved integrated thin‐film planar dc SQUID gradiometers , 1985 .

[24]  M. Hidaka,et al.  Microwave SQUID Multiplexer for TES Readout , 2013, IEEE Transactions on Applied Superconductivity.

[25]  B. Bumble,et al.  Recent Results of a New Microwave SQUID Multiplexer , 2008 .

[26]  D. T. Vo,et al.  14-pixel, multiplexed array of gamma-ray microcalorimeters with 47 eV energy resolution at 103 keV , 2007 .

[27]  S. R. Golwala,et al.  Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors , 2012, 1203.4549.

[28]  Adrian T. Lee,et al.  High-resolution operation of frequency-multiplexed transition-edge photon sensors , 2002 .

[29]  Mark B. Ketchen,et al.  Planar coupling scheme for ultra low noise DC SQUIDs , 1981 .

[30]  Fiona A. Harrison,et al.  Position sensitive x-ray spectrophotometer using microwave kinetic inductance detectors , 2006 .

[31]  Jochem J. A. Baselmans,et al.  Kinetic Inductance Detectors , 2012, Journal of Low Temperature Physics.

[32]  H. Zirath,et al.  Ultralow-Power Cryogenic InP HEMT With Minimum Noise Temperature of 1 K at 6 GHz , 2012, IEEE Electron Device Letters.

[33]  W. B. Doriese,et al.  Large-Area Microcalorimeter Detectors for Ultra-High-Resolution X-Ray and Gamma-Ray Spectroscopy , 2009, IEEE Transactions on Nuclear Science.

[34]  Adrian T. Lee,et al.  Superconducting bolometer for far-infrared Fourier transform spectroscopy , 2003 .