An iterative solver for p-version finite elements in three dimensions

Abstract A new iterative method for systems arising from p-version finite elements is presented and computational experience reported for conforming, solid, serendipity elements of order up to p = 8 and real-world structures with 5000 elements and over 1 million degrees of freedom. The method uses a domain decomposition technique with each element taken to be a subdomain, and a coarse space consisting of p = 1 elements. To overcome the I/O bottleneck, only access to a fast matrix—vector multiplication instead of stiffness data is needed during iterations. In terms of wall-clock time, the method outperforms on IBM RS/6000 an earlier method running on CRAY-XMP.

[1]  Jan Mandel,et al.  Iterative solvers by substructuring for the p -version finite element method , 1990 .

[2]  A. Yu. Yeremin,et al.  Block SSOR preconditionings for high order 3d fe systems , 1989 .

[3]  Igor E. Kaporin,et al.  Block SSOR preconditionings for high-order 3D FE systems. II. Incomplete BSSOR preconditionings , 1991 .

[4]  I. Babuska,et al.  Efficient preconditioning for the p -version finite element method in two dimensions , 1991 .

[5]  Jinchao Xu,et al.  Some Estimates for a Weighted L 2 Projection , 1991 .

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  Jan Mandel,et al.  Two-level domain decomposition preconditioning for the p-version finite element method in three dimensions , 1990 .

[8]  Barry F. Smith A domain decomposition algorithm for elliptic problems in three dimensions , 1990 .

[9]  Vijay Sonnad,et al.  Multilevel solution method for the p-version of finite elements , 1989 .

[10]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[11]  Jan Mandel,et al.  Domain decomposition preconditioning for p-version finite elements with high aspect rations , 1991 .

[12]  Ivo Babuška,et al.  The Problem of Selecting the Shape Functions for a p-Type Finite Element , 1989 .

[13]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[14]  Petter E. Bjørstad,et al.  On the spectra of sums of orthogonal projections with applications to parallel computing , 1991 .

[15]  Anthony T. Patera,et al.  Spectral element multigrid. I. Formulation and numerical results , 1987 .

[16]  T. Manteuffel,et al.  A taxonomy for conjugate gradient methods , 1990 .

[17]  Olof B. Widlund,et al.  Domain Decomposition Algorithms with Small Overlap , 1992, SIAM J. Sci. Comput..