Dynamics of entire functions near the essential singularity

Abstract We show that entire functions which are critically finite and which meet certain growth conditions admit ‘Cantor bouquets’ in their Julia sets. These are invariant subsets of the Julia set which are homeomorphic to the product of a Cantor set and the line [0, ∞). All of the curves in the bouquet tend to ∞ in the same direction, and the map behaves like the shift automorphism on the Cantor set. Hence the dynamics near ∞ for these types of maps may be analyzed completely. Among the entire maps to which our methods apply are exp (z), sin (z), and cos (z).

[1]  P. Blanchard Complex analytic dynamics on the Riemann sphere , 1984 .

[2]  I. N. Baker An entire function which has wandering domains , 1976, Journal of the Australian Mathematical Society.

[3]  Curtis T. McMullen,et al.  Area and Hausdorff dimension of Julia sets of entire functions , 1987 .

[4]  D. Sullivan,et al.  On the dynamics of rational maps , 1983 .

[5]  A. Douady,et al.  Étude dynamique des polynômes complexes , 1984 .

[6]  R. Devaney EXPLODING JULIA SETS , 1986 .

[7]  I. N. Baker Wandering Domains in the Iteration of Entire Functions , 1984 .

[8]  Robert L. Devaney,et al.  Dynamics of exp (z) , 1984, Ergodic Theory and Dynamical Systems.

[9]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .

[10]  L. Keen,et al.  A finiteness theorem for a dynamical class of entire functions , 1986, Ergodic Theory and Dynamical Systems.

[11]  P. J. Rippon,et al.  Iteration of exponential functions , 1984 .

[12]  P. Fatou,et al.  Sur l'itération des fonctions transcendantes Entières , 1926 .

[13]  I. N. Baker Repulsive fixpoints of entire functions , 1968 .

[14]  R. Devaney Bursts into chaos , 1984 .

[15]  Robert L. Devaney,et al.  Julia sets and bifurcation diagrams for exponential maps , 1984 .

[16]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[17]  R. Devaney STRUCTURAL INSTABILITY OF exp(z) , 1985 .

[18]  Michał Misiurewicz,et al.  On iterates of ez , 1981, Ergodic Theory and Dynamical Systems.