Efficient BSR-based parallel algorithms for geometrical problems

This paper presents BSR-parallel algorithms for three geometrical problems: point location, convex hull and smallest enclosing rectangle. These problems are solved in constant time using the BSR model introduced by Akl and Guenther in 1989. The first algorithm uses O(N) processors (N is the number of edges of the polygon R). The second uses O(N'/sup 2/) processors (N' is the number of points) and the third one uses O(N'/sup 2/) processors (it need the convex hull) to solve the smallest enclosing rectangle problem. These new results suggest that many other geometrical problems can be solved in constant time using the BSR model.

[1]  E. Mucke Shapes and implementations in three-dimensional geometry , 1993 .

[2]  Ivan Stojmenovic,et al.  Constant Time BSR Solutions to Parenthesis Matching, Tree Decoding, and Tree Reconstruction From Its Traversals , 1996, IEEE Trans. Parallel Distributed Syst..

[3]  Jean Frédéric Myoupo,et al.  EFFICIENT PARALLEL ALGORITHMS FOR THE LIS AND LCS PROBLEMS ON BSR MODEL USING CONSTANT NUMBER OF SELECTIONS , 2000, Parallel Algorithms Appl..

[4]  Wojciech Rytter,et al.  Efficient parallel algorithms , 1988 .

[5]  Herbert Freeman,et al.  Determining the minimum-area encasing rectangle for an arbitrary closed curve , 1975, CACM.

[6]  Udi Manber,et al.  Introduction to algorithms - a creative approach , 1989 .

[7]  Jean Frédéric Myoupo,et al.  A Constant Time Parallel Detection of Repetitions , 1999, Parallel Process. Lett..

[8]  Ivan Stojmenovic,et al.  Multiple criteria BSR: an implementation and applications to computational geometry problems , 1994, 1994 Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences.

[9]  Selim G. Akl,et al.  Broadcasting with Selective Reduction , 1989, IFIP Congress.

[10]  Herbert Freeman,et al.  Computer Processing of Line-Drawing Images , 1974, CSUR.

[11]  Viktor K. Prasanna,et al.  Constant Time Algorithms for Computational Geometry on the Reconfigurable Mesh , 1997, IEEE Trans. Parallel Distributed Syst..

[12]  Azriel Rosenfeld,et al.  Picture Processing by Computer , 1969, CSUR.

[13]  Jean Frédéric Myoupo,et al.  Time-Efficient Parallel Algorithms for the Longest Common Subsequence and Related Problems , 1999, J. Parallel Distributed Comput..

[14]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[15]  David Semé An Efficient Algorithm on the BSR-Based Parallel Architecture for the k-LCS Problem , 1999, PDPTA.

[16]  Luc Devroye,et al.  A Note on Point Location in Delaunay Triangulations of Random Points , 1998, Algorithmica.

[17]  Selim G. Akl,et al.  EFFICIENT CONVEX HULL ALGORITHMS FOR PATTERN RECOGNITION APPLICATIONS. , 1979 .

[18]  Selim G. Akl,et al.  Design and analysis of parallel algorithms , 1985 .

[19]  Jack Sklansky,et al.  Measuring Concavity on a Rectangular Mosaic , 1972, IEEE Transactions on Computers.