Qualitative decision theory: from savage's axioms to nonmonotonic reasoning

This paper investigates to what extent a purely symbolic approach to decision making under uncertainty is possible, in the scope of artificial intelligence. Contrary to classical approaches to decision theory, we try to rank acts without resorting to any numerical representation of utility or uncertainty, and without using any scale on which both uncertainty and preference could be mapped. Our approach is a variant of Savage's where the setting is finite, and the strict preference on acts is a partial order. It is shown that although many axioms of Savage theory are preserved and despite the intuitive appeal of the ordinal method for constructing a preference over acts, the approach is inconsistent with a probabilistic representation of uncertainty. The latter leads to the kind of paradoxes encountered in the theory of voting. It is shown that the assumption of ordinal invariance enforces a qualitative decision procedure that presupposes a comparative possibility representation of uncertainty, originally due to Lewis, and usual in nonmonotonic reasoning. Our axiomatic investigation thus provides decision-theoretic foundations to the preferential inference of Lehmann and colleagues. However, the obtained decision rules are sometimes either not very decisive or may lead to overconfident decisions, although their basic principles look sound. This paper points out some limitations of purely ordinal approaches to Savage-like decision making under uncertainty, in perfect analogy with similar difficulties in voting theory.

[1]  Sarit Kraus,et al.  Nonmonotonic Reasoning, Preferential Models and Cumulative Logics , 1990, Artif. Intell..

[2]  D. Dubois,et al.  Conditional Objects as Nonmonotonic Consequence Relationships , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[3]  Joseph Y. Halpern,et al.  Plausibility measures and default reasoning , 1996, JACM.

[4]  P. Fishburn Axioms for Lexicographic Preferences , 1975 .

[5]  Hector Geffner,et al.  High-probabilities, model-preference and default arguments , 1992, Minds and Machines.

[6]  Ronen I. Brafman,et al.  On the Axiomatization of Qualitative Decision Criteria , 1997, AAAI/IAAI.

[7]  P. Fishburn The Axioms of Subjective Probability , 1986 .

[8]  Andreu Mas-Colell,et al.  General Possibility Theorems for Group Decisions , 1972 .

[9]  Didier Dubois,et al.  Possibility Theory as a Basis for Qualitative Decision Theory , 1995, IJCAI.

[10]  Ronen I. Brafman,et al.  Modeling Agents as Qualitative Decision Makers , 1997, Artif. Intell..

[11]  Abraham Wald,et al.  Statistical Decision Functions , 1951 .

[12]  E. W. Adams,et al.  The logic of conditionals , 1975 .

[13]  Didier Dubois,et al.  Nonmonotonic Reasoning, Conditional Objects and Possibility Theory , 1997, Artif. Intell..

[14]  Simon Grant,et al.  Decomposable Choice under Uncertainty , 2000, J. Econ. Theory.

[15]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[16]  Jérôme Lang,et al.  Conditional Desires and Utilities: an Alternative Logical Approach to Qualitative Decision Theory , 1996, ECAI.

[17]  Wolf-Rudiger Heilmann,et al.  Decision theoretic foundations of credibility theory , 1989 .

[18]  J. Weymark Arrow's theorem with social quasi-orderings , 1984 .

[19]  Craig Boutilier,et al.  Toward a Logic for Qualitative Decision Theory , 1994, KR.

[20]  Richmond H. Thomason,et al.  Desires and Defaults: A Framework for Planning with Inferred Goals , 2000, KR.

[21]  Simon Grant,et al.  Weakening the Sure-Thing Principle: Decomposable Choice under Uncertainty , 1997 .

[22]  Régis Sabbadin,et al.  Empirical Comparison of Probabilistic and Possibilistic Markov Decision Processes Algorithms , 2000, ECAI.

[23]  J. Jaffray,et al.  Rational Behavior under Complete Ignorance , 1980 .

[24]  H. Moulin Axioms of Cooperative Decision Making , 1988 .

[25]  Ronen I. Brafman,et al.  An axiomatic treatment of three qualitative decision criteria , 2000, JACM.

[26]  Didier Dubois,et al.  A characterization of generalized concordance rules in multicriteria decision making , 2003, Int. J. Intell. Syst..

[27]  Peter Gärdenfors,et al.  Knowledge in Flux , 1988 .

[28]  Didier Dubois,et al.  Possibilistic and Standard Probabilistic Semantics of Conditional Knowledge Bases , 1997, J. Log. Comput..

[29]  Philippe Smets,et al.  Quantified Representation of Uncertainty and Imprecision , 1998 .

[30]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[31]  Paul Snow The Emergence of Ordered Belief from Initial Ignorance , 1994, AAAI.

[32]  Didier Dubois,et al.  Decision-theoretic foundations of qualitative possibility theory , 2001, Eur. J. Oper. Res..

[33]  J. Neumann,et al.  The Theory of Games and Economic Behaviour , 1944 .

[34]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[35]  Patrice Perny,et al.  Qualitative Models for Decision Under Uncertainty without the Commensurability Assumption , 1999, UAI.

[36]  Joseph Y. Halpern Defining Relative Likelihood in Partially-Ordered Preferential Structures , 1996, UAI.

[37]  Daniel Lehmann,et al.  Generalized Qualitative Probability: Savage revisited , 1996, UAI.

[38]  J. Neumann,et al.  Theory of Games and Economic Behavior. , 1945 .

[39]  Didier Dubois,et al.  Possibility Theory: Qualitative and Quantitative Aspects , 1998 .

[40]  Jon Doyle,et al.  Impediments to Universal Preference-Based Default Theories , 1989, KR.

[41]  James P. Delgrande A Preference-Based Approach to Default Reasoning: Preliminary Report , 1994, AAAI.

[42]  D. Dubois,et al.  Decision-making under ordinal preferences and uncertainty , 1997 .

[43]  J. Jaffray Linear utility theory for belief functions , 1989 .

[44]  Didier Dubois,et al.  Epistemic Entrenchment and Possibilistic Logic , 1991, Artif. Intell..

[45]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[46]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[47]  Kenneth J. Arrow,et al.  Studies in Resource Allocation Processes: Appendix: An optimality criterion for decision-making under ignorance , 1977 .

[48]  Alexis Tsoukiàs,et al.  Preference Modelling , 2004, Preferences.

[49]  Claudette Cayrol,et al.  Management of Preferences in Assumption-Based Reasoning , 1992, IPMU.

[50]  Ronen I. Brafman,et al.  On the Foundations of Qualitative Decision Theory , 1996, AAAI/IAAI, Vol. 2.

[51]  Patrice Perny,et al.  Qualitative Models for Decision Making under Uncertainty: an Axiomatic Investigation , 1999 .

[52]  Didier Dubois,et al.  Comparative uncertainty, belief functions and accepted beliefs , 1998, UAI.

[53]  Judea Pearl,et al.  Qualitative Decision Theory , 1994, AAAI.

[54]  D Dubois,et al.  Belief structures, possibility theory and decomposable confidence measures on finite sets , 1986 .

[55]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[56]  Gerhard Brewka,et al.  Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.

[57]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[58]  Adam J. Grove,et al.  Two modellings for theory change , 1988, J. Philos. Log..

[59]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[60]  Didier Dubois,et al.  Decision-Making under Ordinal Preferences and Comparative Uncertainty , 1997, UAI.

[61]  Paul Snow,et al.  Diverse Confidence Levels in a Probabilistic Semantics for Conditional Logics , 1999, Artif. Intell..

[62]  Daniel Lehmann,et al.  What does a Conditional Knowledge Base Entail? , 1989, Artif. Intell..

[63]  Stefan Brass,et al.  Deduction with Supernormal Defaults , 1991, Nonmonotonic and Inductive Logic.

[64]  Didier Dubois,et al.  Conditional objects, possibility theory and default rules , 1996 .

[65]  Jon Doyle,et al.  Background to Qualitative Decision Theory , 1999, AI Mag..

[66]  W. Salmon,et al.  Knowledge in Flux , 1991 .

[67]  Fahiem Bacchus,et al.  Utility Independence in a Qualitative Decision Theory , 1996, KR.