Extension technique for complete Bernstein functions of the Laplace operator

We discuss the representation of certain functions of the Laplace operator $$\Delta $$Δ as Dirichlet-to-Neumann maps for appropriate elliptic operators in half-space. A classical result identifies $$(-\Delta )^{1/2}$$(-Δ)1/2, the square root of the d-dimensional Laplace operator, with the Dirichlet-to-Neumann map for the $$(d + 1)$$(d+1)-dimensional Laplace operator $$\Delta _{t,x}$$Δt,x in $$(0, \infty ) \times \mathbf {R}^d$$(0,∞)×Rd. Caffarelli and Silvestre extended this to fractional powers $$(-\Delta )^{\alpha /2}$$(-Δ)α/2, which correspond to operators $$\nabla _{t,x} (t^{1 - \alpha } \nabla _{t,x})$$∇t,x(t1-α∇t,x). We provide an analogous result for all complete Bernstein functions of $$-\Delta $$-Δ using Krein’s spectral theory of strings. Two sample applications are provided: a Courant–Hilbert nodal line theorem for harmonic extensions of the eigenfunctions of non-local Schrödinger operators $$\psi (-\Delta ) + V(x)$$ψ(-Δ)+V(x), as well as an upper bound for the eigenvalues of these operators. Here $$\psi $$ψ is a complete Bernstein function and V is a confining potential.

[1]  Feng-Yu Wang,et al.  Higher order eigenvalues for non-local Schrödinger operators , 2017, 1703.09954.

[2]  M. Kwasnicki,et al.  Spectral analysis of subordinate Brownian motions on the half-line , 2010, 1006.0524.

[3]  L. Roncal,et al.  Fractional Laplacian on the torus , 2012, 1209.6104.

[4]  S. Chang,et al.  Fractional Laplacian in conformal geometry , 2010, 1003.0398.

[5]  Some Explicit Krein Representations of Certain Subordinators, Including the Gamma Process , 2005, math/0503254.

[6]  R. Carmona,et al.  Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions , 1990 .

[7]  J. Małecki,et al.  Spectral properties of the massless relativistic harmonic oscillator , 2010, 1006.3665.

[8]  P. R. Stinga,et al.  Extension Problem and Harnack's Inequality for Some Fractional Operators , 2009, 0910.2569.

[9]  M. Kwasnicki Intrinsic Ultracontractivity for Stable Semigroups on Unbounded Open Sets , 2009 .

[10]  Alexey Kuznetsov,et al.  Eigenvalues of the fractional Laplace operator in the unit ball , 2015, J. Lond. Math. Soc..

[11]  R. Frank Eigenvalue bounds for the fractional Laplacian: A review , 2016, 1603.09736.

[12]  J. V. Casteren,et al.  Stochastic Spectral Theory for Selfadjoint Feller Operators , 2000 .

[13]  L. Silvestre,et al.  Uniqueness of Radial Solutions for the Fractional Laplacian , 2013, 1302.2652.

[14]  R. DeBlassie,et al.  Higher order PDEs and symmetric stable processes , 2004 .

[15]  Traces of symmetric Markov processes and their characterizations , 2006, math/0606784.

[16]  Tadeusz Kulczycki,et al.  Spectral properties of the Cauchy process on half‐line and interval , 2009, 0906.3113.

[17]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[18]  K. Kaleta,et al.  Fall-Off of Eigenfunctions for Non-Local Schrödinger Operators with Decaying Potentials , 2015, 1503.03508.

[19]  W. Arendt,et al.  Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator , 2016, 1608.05707.

[20]  Pedro J. Miana,et al.  Extension problem and fractional operators: semigroups and wave equations , 2012, 1207.7203.

[21]  Renming Song,et al.  Two-sided eigenvalue estimates for subordinate processes in domains , 2005 .

[22]  S. Molchanov,et al.  Symmetric Stable Processes as Traces of Degenerate Diffusion Processes , 1969 .

[23]  D. Lenz,et al.  Compactness of Schrödinger semigroups , 2009 .

[24]  S. Watanabe,et al.  Krein's spectral theory of strings and generalized diffusion processes , 1982 .

[25]  The stability and instability of relativistic matter , 1988 .

[26]  Elliott H. Lieb,et al.  Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators , 2006 .

[27]  R. Dante DeBlassie,et al.  The First Exit Time of a Two-Dimensional Symmetric Stable Process from a Wedge , 1990 .

[28]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[29]  Alexey Kuznetsov,et al.  Fractional Laplace Operator and Meijer G-function , 2015, 1509.08529.

[30]  V. Ambrosio Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator , 2016, 1601.06827.

[31]  Rodrigo Bañuelos,et al.  The Cauchy process and the Steklov problem , 2004 .

[32]  M. Kwasnicki,et al.  Ten equivalent definitions of the fractional laplace operator , 2015, 1507.07356.

[33]  T. Ichinose,et al.  Path integral representation for schrödinger operators with bernstein functions of the laplacian , 2009, 0906.0103.

[34]  Scattering matrix in conformal geometry , 2001, math/0109089.

[35]  James Bruce Lee,et al.  Theory and Application , 2019, Wearable Sensors in Sport.

[36]  Rupert L. Frank,et al.  Uniqueness of non-linear ground states for fractional Laplacians in $${\mathbb{R}}$$R , 2013 .

[37]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[38]  K. Kaleta,et al.  Pointwise eigenfunction estimates and intrinsic ultracontractivity-type properties of Feynman-Kac semigroups for a class of L\'{e}vy processes , 2012, 1209.4220.

[39]  Jinggang Tan,et al.  An extension problem for the CR fractional Laplacian , 2013, 1312.3381.

[40]  Mateusz Kwa'snicki,et al.  Eigenvalues of the fractional Laplace operator in the interval , 2010, 1012.1133.

[41]  Daniel Spector,et al.  Some remarks on boundary operators of Bessel extensions , 2017, 1706.07169.

[42]  K. Kaleta,et al.  Intrinsic Ultracontractivity for Schrödinger Operators Based on Fractional Laplacians , 2009, 0904.4386.

[43]  Harry Dym,et al.  Gaussian processes, function theory, and the inverse spectral problem , 1976 .

[44]  Ray A. Yang On higher order extensions for the fractional Laplacian , 2013, 1302.4413.

[45]  R. Song,et al.  On harmonic functions for trace processes , 2011 .

[46]  Lieb-thirring bound for Schrödinger Operators with Bernstein Functions of the Laplacian , 2012 .

[47]  T. Byczkowski,et al.  Hitting Half-spaces by Bessel-Brownian Diffusions , 2009, 0904.1803.

[48]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[49]  J. Pitman,et al.  Hitting, Occupation, and Inverse Local Times of One-Dimensional Diffusions: Martingale and Excursion , 2003 .