Human keratin diseases: the increasing spectrum of disease and subtlety of the phenotype–genotype correlation

Keratins are obligate heterodimer proteins that form the intermediate filament cytoskeleton of all epithelial cells. Keratins are tissue and differentiation specific and are expressed in pairs of types I and II proteins. The spectrum of inherited human keratin diseases has steadily increased since the causative role of mutations in the basal keratinocyte keratins 5 and 14 in epidermolysis bullosa simplex (EBS) was first reported in 1991. At the time of writing, mutations in 15 epithelial keratins and two trichocyte keratins have been associated with human diseases which include EBS, bullous congenital ichthyosiform erythroderma, epidermolytic palmoplantar keratoderma, ichthyosis bullosa of Siemens, diffuse and focal non‐epidermolytic palmoplantar keratoderma, pachyonychia congenita and monilethrix. Mutations in extracutaneous keratins have been reported in oral white sponge naevus and Meesmann's corneal dystrophy. New subtleties of phenotype–genotype correlation are emerging within the keratin diseases with widely varying clinical presentations attributable to similar mutations within the same keratin. Mutations in keratin‐associated proteins have recently been reported for the first time. This article reviews clinical, ultrastructural and molecular aspects of all the keratin diseases described to date and delineates potential future areas of research in this field.

[1]  J. Uitto,et al.  A mutation in human keratin K6b produces a phenocopy of the K17 disorder pachyonychia congenita type 2. , 1998, Human molecular genetics.

[2]  M. Omary,et al.  Phosphorylation of human keratin 18 serine 33 regulates binding to 14‐3‐3 proteins , 1998, The EMBO journal.

[3]  J. Uitto,et al.  A new gene for pachyonychia congenita type 2: Keratin K6B is the expression partner of K17 in epidermal appendages , 1998 .

[4]  V. McKusick,et al.  Cloning of multiple K16 genes and genotype-phenotype correlation in pachyonychia congenita type I and focal PPK , 1998 .

[5]  Munro,et al.  Keratin 17 mutations cause either steatocystoma multiplex or pachyonychia congenita type 2 , 1998, The British journal of dermatology.

[6]  E. Lane,et al.  Homozygous nonsense mutation in helix 2 of K14 causes severe recessive epidermolysis bullosa simplex , 1998, Human mutation.

[7]  A. Quantock,et al.  Isolation and chromosomal localization of a cornea-specific human keratin 12 gene and detection of four mutations in Meesmann corneal epithelial dystrophy. , 1997, American journal of human genetics.

[8]  H. Winter,et al.  A new mutation in the type II hair cortex keratin hHb1 involved in the inherited hair disorder monilethrix , 1997, Human Genetics.

[9]  E. Lane,et al.  Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome , 1997, Nature Genetics.

[10]  H. Winter,et al.  Mutations in the hair cortex keratin hHb6 cause the inherited hair disease monilethrix , 1997, Nature Genetics.

[11]  A. Christiano,et al.  Frontiers in keratodermas: pushing the envelope. , 1997, Trends in genetics : TIG.

[12]  Jonathan E. Moore,et al.  Mutations in cornea-specific keratin K3 or K12 genes cause Meesmann's corneal dystrophy , 1997, Nature Genetics.

[13]  K. Mckenna,et al.  A mutation in the V1 domain of keratin 5 causes epidermolysis bullosa simplex with mottled pigmentation. , 1997, The Journal of investigative dermatology.

[14]  G. Priestley,et al.  The prevalence of epidermolysis bullosa in Scotland , 1997, The British journal of dermatology.

[15]  E. Lane,et al.  Missense mutations in keratin 17 cause either pachyonychia congenita type 2 or a phenotype resembling steatocystoma multiplex. , 1997, The Journal of investigative dermatology.

[16]  M. Omary,et al.  Mutation of human keratin 18 in association with cryptogenic cirrhosis. , 1997, The Journal of clinical investigation.

[17]  W. McLean,et al.  Human keratin diseases: , 1996, Experimental dermatology.

[18]  H. Scheffer,et al.  Effects of keratin 14 ablation on the clinical and cellular phenotype in a kindred with recessive epidermolysis bullosa simplex. , 1996, The Journal of investigative dermatology.

[19]  J. Uitto,et al.  Plectin and human genetic disorders of the skin and muscle , 1996, Experimental dermatology.

[20]  E. Fuchs,et al.  The genetic basis of epidermolysis bullosa simplex with mottled pigmentation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[21]  N. Penneys Keratin 13 point mutation underlies the hereditary mucosal epithelial disorder white sponge nevus , 1996 .

[22]  E. Lane,et al.  Plectin deficiency results in muscular dystrophy with epidermolysis bullosa , 1996, Nature Genetics.

[23]  E. Lane,et al.  Loss of plectin causes epidermolysis bullosa with muscular dystrophy: cDNA cloning and genomic organization. , 1996, Genes & development.

[24]  K. Green,et al.  Desmosomes and hemidesmosomes: structure and function of molecular components , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  E. Healy,et al.  A gene for monilethrix is closely linked to the type II keratin gene cluster at 12q13. , 1995, Human molecular genetics.

[26]  E. Lane,et al.  A mutation in the mucosal keratin K4 is associated with oral white sponge nevus , 1995, Nature Genetics.

[27]  S. Bale,et al.  Keratin 13 point mutation underlies the hereditary mucosal epithelia disorder white sponge nevus , 1995, Nature Genetics.

[28]  D. Kelsell,et al.  Novel mutations in keratin 16 gene underly focal non-epidermolytic palmoplantar keratoderma (NEPPK) in two families. , 1995, Human molecular genetics.

[29]  P. Coulombe,et al.  Cloning and Characterization of Multiple Human Genes and cDNAs Encoding Highly Related Type II Keratin 6 Isoforms (*) , 1995, The Journal of Biological Chemistry.

[30]  P. Steinert,et al.  The Proteins Elafin, Filaggrin, Keratin Intermediate Filaments, Loricrin, and Small Proline-rich Proteins 1 and 2 Are Isodipeptide Cross-linked Components of the Human Epidermal Cornified Cell Envelope (*) , 1995, The Journal of Biological Chemistry.

[31]  J. Rothnagel,et al.  Mutation of a type II keratin gene (K6a) in pachyonychia congenita , 1995, Nature Genetics.

[32]  E. Fuchs,et al.  The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14 , 1995, The Journal of cell biology.

[33]  A. Blight,et al.  Birthmark due to cutaneous mosaicism for keratin 10 mutation , 1995, The Lancet.

[34]  E. Lane,et al.  Keratin 16 and keratin 17 mutations cause pachyonychia congenita , 1995, Nature Genetics.

[35]  E. Lane,et al.  Intermediate filaments in disease. , 1995, Current opinion in cell biology.

[36]  R. Iozzo,et al.  Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. , 1994, Genes & development.

[37]  S. Bale,et al.  A mutation in the V1 end domain of keratin 1 in non-epidermolytic palmar-plantar keratoderma. , 1994, The Journal of investigative dermatology.

[38]  E. Fuchs,et al.  Genetic and clinical mosaicism in a type of epidermal nevus. , 1994, The New England journal of medicine.

[39]  E. Fuchs,et al.  Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins , 1994, The Journal of cell biology.

[40]  A. North,et al.  Structural features of keratin intermediate filaments. , 1994, The Journal of investigative dermatology.

[41]  E. Fuchs,et al.  A human keratin 14 "knockout": the absence of K14 leads to severe epidermolysis bullosa simplex and a function for an intermediate filament protein. , 1994, Genes & development.

[42]  E. Lane,et al.  A functional "knockout" of human keratin 14. , 1994, Genes & development.

[43]  E. Lane,et al.  Ichthyosis bullosa of Siemens--a disease involving keratin 2e. , 1994, The Journal of investigative dermatology.

[44]  H. Kremer,et al.  Genetic linkage of the keratin type II gene cluster with ichthyosis bullosa of Siemens and with autosomal dominant ichthyosis exfoliativa. , 1994, The Journal of investigative dermatology.

[45]  T. Strachan,et al.  A gene for pachyonychia congenita is closely linked to the keratin gene cluster on 17q12-q21. , 1994, Journal of medical genetics.

[46]  S. Bale,et al.  Clinical heterogeneity in epidermolytic hyperkeratosis. , 1994, Archives of dermatology.

[47]  D. Hohl,et al.  Mutations in the rod domain of keratin 2e in patients with ichthyosis bullosa of Siemens , 1994, Nature Genetics.

[48]  Karl Sperling,et al.  Keratin 9 gene mutations in epidermolytic palmoplantar keratoderma (EPPK) , 1994, Nature Genetics.

[49]  W. Franke,et al.  Molecular characterization of the body site-specific human epidermal cytokeratin 9: cDNA cloning, amino acid sequence, and tissue specificity of gene expression. , 1993, Differentiation; research in biological diversity.

[50]  I. Leigh,et al.  Missing links: Weber–Cockayne keratin mutations implicate the L12 linker domain in effective cytoskeleton function , 1993, Nature Genetics.

[51]  E. Fuchs,et al.  The genetic basis of Weber-Cockayne epidermolysis bullosa simplex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[52]  P M Steinert,et al.  Structure, function, and dynamics of keratin intermediate filaments. , 1993, The Journal of investigative dermatology.

[53]  Y. Barrandon,et al.  A missense mutation in the rod domain of keratin 14 associated with recessive epidermolysis bullosa simplex , 1993, Nature Genetics.

[54]  D. Cooper,et al.  Human gene mutations affecting RNA processing and translation. , 1993, Annals of medicine.

[55]  F. Mansergh,et al.  A mutation (met→arg) in the type I keratin (K14) gene responsible for autosomal dominant epidermolysis bullosa simplex , 1993, Human mutation.

[56]  Elaine Fuchs,et al.  The genetic basis of epidermolytic hyperkeratosis: A disorder of differentiation-specific epidermal keratin genes , 1992, Cell.

[57]  S. Bale,et al.  A leucine→proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis , 1992, Cell.

[58]  S. Kubicka,et al.  Characterization of human cytokeratin 2, an epidermal cytoskeletal protein synthesized late during differentiation. , 1992, Experimental cell research.

[59]  D Hohl,et al.  Mutations in the Rod Domains of Keratins 1 and 10 in Epidermolytic Hyperkeratosis , 1992, Science.

[60]  D. Ward,et al.  In situ hybridization to the crithidia fasciculata kinetoplast reveals two antipodal sites involved in kinetoplast DNA replication , 1992, Cell.

[61]  E. Fuchs,et al.  Transgenic mice expressing a mutant keratin 10 gene reveal the likely genetic basis for epidermolytic hyperkeratosis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[62]  E. Lane,et al.  Selective involvement of keratins K1 and K10 in the cytoskeletal abnormality of epidermolytic hyperkeratosis (bullous congenital ichthyosiform erythroderma). , 1992, The Journal of investigative dermatology.

[63]  C. Amos,et al.  Linkage of epidermolytic hyperkeratosis to the type II keratin gene cluster on chromosome 12q , 1992, Nature Genetics.

[64]  A. Ishida-Yamamoto,et al.  Epidermolysis bullosa simplex (Dowling‐Meara). A clinicopathological review , 1992, The British journal of dermatology.

[65]  E. Lane,et al.  A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering , 1992, Nature.

[66]  A. Lin,et al.  Epidermolysis bullosa : basic and clinical aspects , 1992 .

[67]  E. Lane,et al.  Epidermolysis bullosa simplex (Dowling-Meara type) is a genetic disease characterized by an abnormal keratin-filament network involving keratins K5 and K14. , 1991, The Journal of investigative dermatology.

[68]  Alana L. Rothman,et al.  Epidermolysis bullosa simplex: evidence in two families for keratin gene abnormalities. , 1991, Science.

[69]  Elaine Fuchs,et al.  Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: Genetic and functional analyses , 1991, Cell.

[70]  E. Fuchs,et al.  Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease , 1991, Cell.

[71]  E. Bauer,et al.  Revised clinical and laboratory criteria for subtypes of inherited epidermolysis bullosa. A consensus report by the Subcommittee on Diagnosis and Classification of the National Epidermolysis Bullosa Registry. , 1991, Journal of the American Academy of Dermatology.

[72]  P. Steinert The two-chain coiled-coil molecule of native epidermal keratin intermediate filaments is a type I-type II heterodimer. , 1990, The Journal of biological chemistry.

[73]  E. Lane,et al.  Embryonic simple epithelial keratins 8 and 18: chromosomal location emphasizes difference from other keratin pairs. , 1990, The New biologist.

[74]  K Weber,et al.  The coiled coil of in vitro assembled keratin filaments is a heterodimer of type I and II keratins: use of site-specific mutagenesis and recombinant protein expression , 1990, The Journal of cell biology.

[75]  M. Murdoch,et al.  Ichthyosis bullosa of Siemens and bullous ichthyosiform erythroderma–variants of the same disease? , 1990, Clinical and experimental dermatology.

[76]  D. Parry Primary and Secondary Structure of IF Protein Chains and Modes of Molecular Aggregation , 1990 .

[77]  S. Rüegger,et al.  Epidermolysis bullosa simplex with mottled pigmentation. , 1989, Journal of the American Academy of Dermatology.

[78]  I. Leigh,et al.  Keratin 19: predicted amino acid sequence and broad tissue distribution suggest it evolved from keratinocyte keratins. , 1989, The Journal of investigative dermatology.

[79]  E. Fuchs,et al.  Expression of mutant keratin cDNAs in epithelial cells reveals possible mechanisms for initiation and assembly of intermediate filaments , 1989, The Journal of cell biology.

[80]  D. Parry,et al.  Intermediate filament structure: 3. Analysis of sequence homologies , 1988 .

[81]  K. Konrad,et al.  Epidermolysis bullosa herpetiformis Dowling-Meara in a large family. , 1988, Journal of the American Academy of Dermatology.

[82]  M. Blumenberg,et al.  Inactivation of human keratin genes: the spectrum of mutations in the sequence of an acidic keratin pseudogene. , 1988, Molecular biology and evolution.

[83]  D. Roop,et al.  Regulated expression of differentiation-associated keratins in cultured epidermal cells detected by monospecific antibodies to unique peptides of mouse epidermal keratins. , 1987, Differentiation; research in biological diversity.

[84]  M. Potschka The structure of intermediate filaments. , 1986, Biophysical journal.

[85]  A. Steven,et al.  The coiled-coil molecules of intermediate filaments consist of two parallel chains in exact axial register. , 1985, Biochemical and biophysical research communications.

[86]  K. Weber,et al.  Antiparallel orientation of the two double-stranded coiled-coils in the tetrameric protofilament unit of intermediate filaments. , 1985, Journal of molecular biology.

[87]  D A Parry,et al.  Intermediate filaments: conformity and diversity of expression and structure. , 1985, Annual review of cell biology.

[88]  W. Franke,et al.  Heterotypic tetramer (A2D2) complexes of non-epidermal keratins isolated from cytoskeletons of rat hepatocytes and hepatoma cells. , 1984, Journal of molecular biology.

[89]  M. Kero Epidermolysis bullosa in Finland. Clinical features, morphology and relation to collagen metabolism. , 1984, Acta dermato-venereologica. Supplementum.

[90]  D. Parry,et al.  Structure of intermediate filaments , 1983 .

[91]  E. Adamson,et al.  Intermediate filament protein synthesis in preimplantation murine embryos. , 1983, Developmental biology.

[92]  I. Anton‐Lamprecht Genetically induced abnormalities of epidermal differentiation and ultrastructure in ichthyoses and epidermolyses: pathogenesis, heterogeneity, fetal manifestation, and prenatal diagnosis. , 1983, The Journal of investigative dermatology.

[93]  Benjamin Geiger,et al.  The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells , 1982, Cell.

[94]  U. Schnyder,et al.  Epidermolysis bullosa herpetiformis Dowling-Meara. Report of a case and pathomorphogenesis. , 1982, Dermatologica.

[95]  I. Dubé,et al.  Meesmann's corneal dystrophy: ultrastructural features. , 1982, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[96]  Elaine Fuchs,et al.  Changes in keratin gene expression during terminal differentiation of the keratinocyte , 1980, Cell.

[97]  T. A. Furuse,et al.  [White sponge nevus]. , 1979, Ars curandi em odontologia.

[98]  T. Gedde-Dahl,et al.  Epidermolysis bullosa simplex and mottled pigmentation: A new dominant syndrome , 1979 .

[99]  D A Parry,et al.  Structure of alpha-keratin: structural implication of the amino acid sequences of the type I and type II chain segments. , 1977, Journal of molecular biology.

[100]  B. S. Fine,et al.  Meesmann's epithelial dystrophy of the cornea. , 1977, American journal of ophthalmology.

[101]  G. B. Dowling,et al.  EPIDERMOLYSIS BULLOSA RESEMBLING JUVENILE DERMATITIS HERPETIFORMIS. * , 1954, The British journal of dermatology.

[102]  S. Anning RECURRENT BULLOUS ERUPTION OF THE FEET. , 1951, The British journal of dermatology.

[103]  S. Lawler,et al.  Pachyonychia congenita; a report of six cases in one family, with a note on linkage data. , 1951, Annals of eugenics.

[104]  D. Lyon,et al.  THE TREATMENT OF OBESITY: A COMPARISON OF THE EFFECTS OF DIET AND OF THYROID EXTRACT , 1932 .

[105]  A. Gossage The inheritance of certain human abnormalities. , 1908, The Eugenics review.

[106]  H. Köbner,et al.  Hereditäre Anlage zur Blasenbildung (Epidermolysis bullosa hereditaria) , 1886 .