Retreat rates, modalities and agents responsible for erosion along the coastal chalk cliffs of Upper Normandy: The contribution of terrestrial laser scanning

In order to follow all the changes affecting the coastal chalk cliff face in Upper Normandy and improve knowledge about cliff erosion, repeated terrestrial laser scanning (TLS) surveys were carried out frequently between 2010 and 2013 (every 4–5 months). They were conducted at two sites with similar lithostratigraphic characteristics but different exposures to marine actions (the former being an abandoned cliff and the latter an active cliff). They provide a quantification of the production of debris with centimeter precision (from ± 0.01 to 0.04 m). These surveys provided three major outcomes: 1) cliff retreat rates were measured at high spatial resolution with retreat values, unsurprisingly, 3-4 times higher for an active cliff than for an abandoned cliff. This result highlights that marine actions should be seen as not only a transport agent but also a particularly effective erosion agent; 2) a significant proportion of debris fall production (about 25%) in the total active cliff retreat was identified; and 3) one of the modalities of retreat was visualized as the creation of a basal notch, which propagates instability towards the upper part of the cliff face. Later, this instability generates rock falls coming from the whole cliff face.

[1]  Garry Burton,et al.  TERRESTRIAL LASER SCANNER , 2007 .

[2]  P. Allemand,et al.  Performance of Image Correlation Techniques for Landslide Displacement Monitoring , 2013 .

[3]  Derek D. Lichti,et al.  Error modelling, calibration and analysis of an AM–CW terrestrial laser scanner system , 2007 .

[4]  Michel Jaboyedoff,et al.  Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event , 2009 .

[5]  T. Dewez,et al.  Probabilistic coastal cliff collapse hazard from repeated terrestrial laser surveys: case study from Mesnil Val (Normandy, northern France) , 2013 .

[6]  M. Jaboyedoff,et al.  Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning , 2009 .

[7]  S. Costa,et al.  Le recul des falaises crayeuses du Pays de Caux : détermination des processus d'érosion et quantification des rythmes d'évolution , 2002 .

[8]  K. Terzaghi,et al.  Mechanism of Landslides , 1950 .

[9]  A. Abellán,et al.  Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring , 2010 .

[10]  M. Whitworth,et al.  Landslide Laser Scanning: a new look at an old problem , 2003, Quarterly Journal of Engineering Geology and Hydrogeology.

[11]  J. Travelletti,et al.  Monitoring Landslide Displacements during a Controlled Rain Experiment Using a Long-range Terrestrial Laser Scanning ( Tls ) , 2008 .

[12]  N. Rosser,et al.  Identifying the behavioural characteristics of clay cliffs using intensive monitoring and geotechnical numerical modelling , 2010 .

[13]  Antonio Galgaro,et al.  Terrestrial laser scanner to detect landslide displacement fields: a new approach , 2007 .

[14]  D. Petley,et al.  Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion , 2005, Quarterly Journal of Engineering Geology and Hydrogeology.

[15]  砂村 継夫 Geomorphology of rocky coasts , 1992 .

[16]  S. Costa,et al.  Vitesses et modalités de recul des falaises crayeuses de Haute-Normandie (France) : méthodologie et variabilité du recul , 2014 .

[17]  Nicola Walsh,et al.  Rocky coast geomorphology and erosional processes: A case study along the Murgia coastline South of Bari, Apulia — SE Italy , 2007 .

[18]  D. Petley,et al.  Patterns of precursory rockfall prior to slope failure , 2007 .

[19]  K. Stone,et al.  Chalk physical properties and cliff instability , 2004, Geological Society, London, Engineering Geology Special Publications.

[20]  D. Petley,et al.  Combined Digital Photogrammetry and Time‐of‐Flight Laser Scanning for Monitoring Cliff Evolution , 2005 .

[21]  S. Costa "Dynamique littorale et risques naturels" : L'impact des aménagements, des variations du niveau marin et des modifications climatiques entre la baie de Seine et la baie de Somme (Haute-Normandie, Picardie ; France) , 1997 .

[22]  Pauline Letortu Le recul des falaises crayeuses haut-normandes et les inondations par la mer en Manche centrale et orientale : de la quantification de l’aléa à la caractérisation des risques induits , 2013 .

[23]  J. Rodet Les karsts de la craie : étude comparative , 1991 .

[24]  D. Varnes SLOPE MOVEMENT TYPES AND PROCESSES , 1978 .

[25]  G. Breton,et al.  Mid-cretaceous sequence stratigraphy and sedimentary cyclicity in the western Paris Basin , 1992 .

[26]  M. Jaboyedoff,et al.  Terrestrial laser scanning of rock slope instabilities , 2014 .

[27]  Michel Jaboyedoff,et al.  Collapse at the eastern Eiger flank in the Swiss Alps , 2008 .

[28]  C. Delacourt,et al.  Landslide detection and monitoring capability of boat-based mobile laser scanning along Dieppe coastal cliffs, Normandy , 2015, Landslides.

[29]  Claudio Margottini,et al.  Landslide Science and Practice: Volume 3: Spatial Analysis and Modelling , 2013 .

[30]  M. Jaud Techniques d'observation et de mesure haute résolution des transferts sédimentaires dans la frange littorale , 2011 .

[31]  D. Stead,et al.  Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques , 2009 .

[32]  A. Trenhaile The Geomorphology of Rock Coasts , 1987 .

[33]  T. Sunamura A wave tank experiment on the erosional mechanism at a cliff base , 1982 .

[34]  Manfred Joswig,et al.  Landslide surface monitoring based on UAV- and ground-based images and terrestrial laser scanning: accuracy analysis and morphological interpretation , 2013 .

[35]  D. Petley,et al.  Erosional processes in the hard rock coastal cliffs at Staithes, North Yorkshire , 2010 .

[36]  S. Costa,et al.  The gravel beaches in north-west France and their contribution to the dynamic of the coastal cliff/shore platform system , 2006 .

[37]  Michael Lim,et al.  Coastline retreat via progressive failure of rocky coastal cliffs , 2013 .

[38]  É. Lasseur La Craie du Bassin de Paris (Cénomanien-Campanien, Crétacé supérieur). Sédimentologie de faciès, stratigraphie séquentielle et géométrie 3D. , 2007 .

[39]  Rory N. Mortimore,et al.  Lithostratigraphy and biostratigraphy of the lewes and seaford chalks: A link across the Anglo-Paris basin at the Turonian-Senonian boundary , 1987 .

[40]  A. Brad Murray,et al.  Beach and sea-cliff dynamics as a driver of long-term rocky coastline evolution and stability , 2011 .

[41]  Didier Hantz,et al.  An historical, geomechanical and probabilistic approach to rock-fall hazard assessment , 2003 .

[42]  D. Delahaye,et al.  Quantification of the Normandy and Picardy chalk cliff retreat by photogrammetric analysis , 2004, Geological Society, London, Engineering Geology Special Publications.

[43]  Christophe Delacourt,et al.  Remote-sensing techniques for analysing landslide kinematics: a review , 2007 .

[44]  P. Limber,et al.  The unsteady nature of sea cliff retreat due to mechanical abrasion, failure and comminution feedbacks , 2014 .

[45]  R. Gutierrez,et al.  Comparison of short-term seacliff retreat measurement methods in Del Mar, California , 2009 .

[46]  Stéphane Costa,et al.  Statistical and empirical analyses of the triggers of coastal chalk cliff failure , 2015 .

[47]  B. Laignel Les altérites à silex de l'ouest du Bassin de Paris : caractérisation lithologique, genèse et utilisation potentielle comme granulats , 1997 .

[48]  M. Jaboyedoff,et al.  Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR , 2014, Landslides.

[49]  Dirk Kuhn,et al.  Coastal cliff monitoring and analysis of mass wasting processes with the application of terrestrial laser scanning: A case study of Rügen, Germany , 2014 .

[50]  M. Jaboyedoff,et al.  Investigation and monitoring of rock slope instabilities in Norway by terrestrial laser scanning , 2012 .

[51]  A. Murray Coastal Geomorphology: An Introduction , 2001 .

[52]  L. Robinson Marine erosive processes at the cliff foot , 1977 .

[53]  Rory N. Mortimore,et al.  Coastal Chalk Cliff Instability , 2006 .

[54]  R. Genevois,et al.  Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation , 2008 .