Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions
暂无分享,去创建一个
[1] V. Pierro,et al. Computation of hyperngeometric functions for gravitationally radiating binary stars , 2002 .
[2] S. Dong,et al. Exact solutions of the s-wave Schrödinger equation with Manning–Rosen potential , 2007 .
[3] N. Michel. Precise Coulomb wave functions for a wide range of complex l, eta and z , 2007, Comput. Phys. Commun..
[4] Adrian A. Husain. Ark , 2010 .
[5] J. Ginocchio. A class of exactly solvable potentials. I. One-dimensional Schrödinger equation☆ , 1984 .
[6] V. Villalba,et al. Scattering of a Klein-Gordon particle by a Woods-Saxon potential , 2005, hep-th/0503108.
[7] Cooper,et al. Relationship between supersymmetry and solvable potentials. , 1987, Physical review. D, Particles and fields.
[8] R. L. Robinson,et al. COULOMB EXCITATION OF ⁷⁵As. , 1967 .
[9] B. M. Fulk. MATH , 1992 .
[10] Y. Sucu,et al. Exact solution of Dirac equation in 2+1 dimensional gravity , 2007 .
[11] Philip M. Morse,et al. On the Vibrations of Polyatomic Molecules , 1932 .
[12] A. Bohr,et al. Study of Nuclear Structure by Electromagnetic Excitation with Accelerated Ions , 1956 .
[13] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[14] M. Stoitsov,et al. Analytically solvable mean-field potential for stable and exotic nuclei , 1997, nucl-th/9703045.
[15] Nico M. Temme,et al. Numerically satisfactory solutions of hypergeometric recursions , 2007, Math. Comput..
[16] Robert C. Forrey,et al. Computing the Hypergeometric Function , 1997 .
[17] Path integral treatment for the one‐dimensional Natanzon potentials , 1993 .
[18] William H. Press,et al. Numerical recipes in C , 2002 .
[19] L. Chetouani,et al. Path integral treatment for the generalized Ginocchio potentials , 1995 .
[20] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[21] H. V. Haeringen,et al. Analytic T matrices for Coulomb plus rational separable potentials , 1975 .
[22] M. Stoitsov,et al. Use of the Ginocchio potential in mean-field studies and beyond , 1998 .
[23] C. Eckart. The Penetration of a Potential Barrier by Electrons , 1930 .
[24] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[25] P. Schmelcher,et al. The analytic continuation of the Gaussian hypergeometric function 2 F 1 ( a,b;c;z ) for arbitrary parameters , 2000 .
[26] Guo Jian-you,et al. Solution of the Dirac Equation with Special Hulthén Potentials , 2003 .
[27] J. Adam. A nonlinear eigenvalue problem in astrophysical magnetohydrodynamics: Some properties of the spectrum , 1989 .
[28] R. M. EL-ASHWAH,et al. HYPERGEOMETRIC FUNCTIONS , 2004 .
[29] Levere C. Hostler. Relativistic Coulomb Sturmian matrix elements and the Coulomb Green’s function of the second‐order Dirac equation , 1987 .
[30] K. S. Kölbig,et al. Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .
[31] Guo Jian-you,et al. Solution of the relativistic Dirac-Woods-Saxon problem , 2002 .
[32] Contiguous relations of hypergeometric series , 2001, math/0109222.
[33] J. Dobaczewski,et al. Continuum effects for the mean-field and pairing properties of weakly bound nuclei , 1999, nucl-th/9905031.
[34] Ericka Stricklin-Parker,et al. Ann , 2005 .
[35] Annie Cuyt,et al. Gamma function and related functions , 2008 .
[36] N. Temme. Numerical aspects of special functions , 2007, Acta Numerica.
[37] P. Cordero,et al. Algebraic solution for the Natanzon hypergeometric potentials , 1994 .
[38] Wolfgang Büring. An analytic continuation of the hypergeometric series , 1987 .
[39] Andrew G. Glen,et al. APPL , 2001 .
[40] E. Guth,et al. Electric Excitation and Disintegration of Nuclei. I. Excitation and Disintegration of Nuclei by the Coulomb Field of Positive Particles , 1951 .