A New Approach to Multiobjective Programming with a Modified Objective Function

In this paper, optimality for multiobjective programming problems having invex objective and constraint functions (with respect to the same function η) is considered. An equivalent vector programming problem is constructed by a modification of the objective function. Furthermore, an η-Lagrange function is introduced for a constructed multiobjective problem and modified saddle point results are presented.

[1]  T. Weir,et al.  Generalised convexity and duality in multiple objective programming , 1989, Bulletin of the Australian Mathematical Society.

[2]  M. A. Hanson On sufficiency of the Kuhn-Tucker conditions , 1981 .

[3]  B. M. Glover,et al.  Invex functions and duality , 1985, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[4]  W. Ziemba,et al.  Generalized concavity in optimization and economics , 1981 .

[5]  R. Nehse,et al.  Some results on dual vector optimization problems 1 , 1985 .

[6]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[7]  Vaithilingam Jeyakumar,et al.  On generalised convex mathematical programming , 1992, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[8]  Sudarsan Nanda,et al.  Proper efficiency conditions and duality for multiobjective programming problems involving semilocally invex functions , 1995 .

[9]  Y. Sawaragi,et al.  Duality theory in multiobjective programming , 1979 .

[10]  P. Kanniappan,et al.  Necessary conditions for optimality of nondifferentiable convex multiobjective programming , 1983 .

[11]  Shelby Brumelle,et al.  Duality for Multiple Objective Convex Programs , 1981, Math. Oper. Res..

[12]  T. Weir,et al.  On duality for weakly minimized vector valued optimization problems , 1986 .

[13]  C. Singh Optimality conditions in multiobjective differentiable programming , 1987 .

[14]  Antonio Rufián-Lizana,et al.  A characterization of weakly efficient points , 1995, Math. Program..

[15]  G. Giorgi,et al.  The Notion of Invexity in Vector Optimization: Smooth and Nonsmooth Case , 1998 .

[16]  A. P.-St Boganmeldelse. Vilfredo Pareto: Cours d'économie politique. Professe a l'Université de Lausanne. I—II. Lausanne, F. Rouge. , .

[17]  Adi Ben-Israel,et al.  What is invexity? , 1986, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[18]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[19]  M. A. Hanson,et al.  Multiobjective duality with invexity , 1987 .

[20]  P. Ruíz-Canales,et al.  Multiobjective Quadratic Problem: Characterization of the Efficient Points , 1998 .

[21]  B. Craven Invex functions and constrained local minima , 1981, Bulletin of the Australian Mathematical Society.

[22]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .