2D metal–organic framework for stable perovskite solar cells with minimized lead leakage

[1]  Yuanhui Sun,et al.  Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction , 2020 .

[2]  Dong Suk Kim,et al.  Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells , 2019, Joule.

[3]  N. Park,et al.  Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells , 2019, Advanced materials.

[4]  Seong Sik Shin,et al.  An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss , 2019, Energy & Environmental Science.

[5]  Essa A. Alharbi,et al.  Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells , 2019, Nature Communications.

[6]  Feng Gao,et al.  Planar perovskite solar cells with long-term stability using ionic liquid additives , 2019, Nature.

[7]  Zhanhao Hu,et al.  Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation , 2019, Nature Energy.

[8]  Yongli Gao,et al.  Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells , 2019, Nature Energy.

[9]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[10]  Tae Joo Shin,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[11]  Ahmad R. Kirmani,et al.  In Situ Back‐Contact Passivation Improves Photovoltage and Fill Factor in Perovskite Solar Cells , 2019, Advanced materials.

[12]  Ligang Wang,et al.  A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells , 2019, Science.

[13]  K. Wu,et al.  Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zr‐MOF Heterojunction Including Bilayer and Hybrid Structures , 2019, Advanced science.

[14]  M. Zeller,et al.  A Thiol-Functionalized UiO-67-Type Porous Single Crystal: Filling in the Synthetic Gap. , 2018, Inorganic chemistry.

[15]  A. Amassian,et al.  High performance ambient-air-stable FAPbI3 perovskite solar cells with molecule-passivated Ruddlesden–Popper/3D heterostructured film , 2018 .

[16]  Y. Meng,et al.  the Role of tBP-LiTFSI Complexes in Perovskite Solar Cells. , 2018 .

[17]  U. Bach,et al.  Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency , 2018 .

[18]  Matthew J. Carnie,et al.  Interface Modification by Ionic Liquid: A Promising Candidate for Indoor Light Harvesting and Stability Improvement of Planar Perovskite Solar Cells , 2018, Advanced Energy Materials.

[19]  I. Han,et al.  Nanocrystalline Titanium Metal-Organic Frameworks for Highly Efficient and Flexible Perovskite Solar Cells. , 2018, ACS nano.

[20]  Yulin Yang,et al.  Doping of [In2(phen)3Cl6]·CH3CN·2H2O Indium‐Based Metal–Organic Framework into Hole Transport Layer for Enhancing Perovskite Solar Cell Efficiencies , 2018 .

[21]  A. Jen,et al.  Realizing Efficient Lead‐Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route , 2018, Advanced materials.

[22]  Philip Schulz,et al.  Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability , 2018 .

[23]  A. Jen,et al.  Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers , 2017 .

[24]  X. Lou,et al.  Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges , 2017, Science Advances.

[25]  Jiansheng Jie,et al.  Metal Acetylacetonate Series in Interface Engineering for Full Low‐Temperature‐Processed, High‐Performance, and Stable Planar Perovskite Solar Cells with Conversion Efficiency over 16% on 1 cm2 Scale , 2017, Advanced materials.

[26]  Nicolaas A. Vermeulen,et al.  Rendering High Surface Area, Mesoporous Metal-Organic Frameworks Electronically Conductive. , 2017, ACS applied materials & interfaces.

[27]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[28]  Jinli Yang,et al.  Decomposition and Cell Failure Mechanisms in Lead Halide Perovskite Solar Cells. , 2017, Inorganic chemistry.

[29]  Yaming Yu,et al.  Glutathione Modified Gold Nanoparticles for Sensitive Colorimetric Detection of Pb2+ Ions in Rainwater Polluted by Leaking Perovskite Solar Cells. , 2016, Analytical chemistry.

[30]  A. Jen,et al.  Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer , 2016, Advanced science.

[31]  H. Fan,et al.  Recent Advances in Improving the Stability of Perovskite Solar Cells , 2016 .

[32]  Kuo-Chuan Ho,et al.  Planar Heterojunction Perovskite Solar Cells Incorporating Metal–Organic Framework Nanocrystals , 2015, Advanced materials.

[33]  David Cahen,et al.  Rain on Methylammonium Lead Iodide Based Perovskites: Possible Environmental Effects of Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[34]  Emmanuel C. Alozie,et al.  Promises and Challenges , 2015 .

[35]  S. Cheng,et al.  Effective mercury sorption by thiol-laced metal-organic frameworks: in strong acid and the vapor phase. , 2013, Journal of the American Chemical Society.

[36]  A. Jen,et al.  Effective interfacial layer to enhance efficiency of polymer solar cells via solution-processed fullerene-surfactants , 2012 .

[37]  Hai-Lung Dai,et al.  Activation of thiols at a silver nanoparticle surface. , 2011, Angewandte Chemie.

[38]  Wei Li,et al.  Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications , 2011, Advanced materials.

[39]  J. Zayed,et al.  Acute Oral and Inhalation Toxicities in Rats With Cadmium Telluride , 2009, International journal of toxicology.

[40]  Alex K.-Y. Jen,et al.  Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells , 2008 .

[41]  G. Scoles,et al.  Structure of CH3(CH2)17SH Self-Assembled on the Ag(111) Surface: An Incommensurate Monolayer , 1991 .

[42]  George M. Whitesides,et al.  Comparison of the Structures and Wetting Properties of Self-Assembled Monolayers of n- Alkanethiols on the Coinage Metal Surfaces, Cu, Ag, Au' , 1991 .