Optimal design of compliant mechanisms for smart structures applications

Compliant mechanisms are currently used in conjunction with induced-strain actuators to provide stroke amplification. These compliant or flexure mechanisms are preferred over conventional rigid-link amplifiers because they avoid problems with clearances in mechanical joints. Many of the current compliant amplifiers are designed using ad-hoc or intuitive methods, however. In this paper, a topology optimization algorithm developed for systematic design of compliant mechanisms is applied to the design of compliant stroke amplifiers for induced-strain actuators. The underlying formulation for the optimization method is presented, and is then illustrated by two design examples. The functionality of the optimal solutions are verified by finite element analyses.