Global Price Updates Help

Periodic global updates of dual variables have been shown to yield a substantial speed advantage in implementations of push-relabel algorithms for the maximum flow and minimum cost flow problems. In this paper, we show that in the context of the bipartite matching and assignment problems, global updates yield a theoretical improvement as well. For bipartite matching, a push-relabel algorithm that uses global updates runs in $O\big(\sqrt n m\frac{\log(n^2/m)}{\log n}\big)$ time (matching the best bound known) and performs worse by a factor of $\sqrt n$ without the updates. A similar result holds for the assignment problem, for which an algorithm that assumes integer costs in the range $[\,-C,\ldots, C\,]$ and that runs in time $O(\sqrt n m\log(nC))$ (matching the best cost-scaling bound known) is presented.

[1]  Andrew V. Goldberg,et al.  Finding Minimum-Cost Circulations by Successive Approximation , 1990, Math. Oper. Res..

[2]  Andrew V. Goldberg,et al.  Sublinear-Time Parallel Algorithms for Matching and Related Problems , 1993, J. Algorithms.

[3]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[4]  Robert E. Tarjan,et al.  Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..

[5]  Ulrich Derigs,et al.  Implementing Goldberg's max-flow-algorithm — A computational investigation , 1989, ZOR Methods Model. Oper. Res..

[6]  Robert E. Tarjan,et al.  Almost-optimum speed-ups of algorithms for bipartite matching and related problems , 1988, STOC '88.

[7]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[8]  Robert B. Dial,et al.  Algorithm 360: shortest-path forest with topological ordering [H] , 1969, CACM.

[9]  E. A. Dinic Algorithm for solution of a problem of maximal flow in a network with power estimation , 1970 .

[10]  Rajeev Motwani,et al.  Clique partitions, graph compression and speeding-up algorithms , 1991, STOC '91.

[11]  Ravindra K. Ahuja,et al.  New scaling algorithms for the assignment and minimum cycle mean problems , 1988 .

[12]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[13]  Robert E. Tarjan,et al.  Network Flow and Testing Graph Connectivity , 1975, SIAM J. Comput..

[14]  Richard J. Anderson,et al.  Goldberg's Algorithm for Maximum Flow in Perspective: A Computational Study , 1991, Network Flows And Matching.

[15]  Andrew Vladislav Goldberg,et al.  Efficient graph algorithms for sequential and parallel computers , 1987 .

[16]  Venkat Venkateswaran,et al.  Implementations of the Goldberg-Tarjan Maximum Flow Algorithm , 1991, Network Flows And Matching.

[17]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[18]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[19]  David S. Johnson,et al.  Network Flows and Matching: First DIMACS Implementation Challenge , 1993 .

[20]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[21]  Andrew V. Goldberg,et al.  An efficient implementation of a scaling minimum-cost flow algorithm , 1993, IPCO.