An adaptive control scheme for discrete-time T-S fuzzy systems with unknown membership parameters

This paper presents a new study of adaptive control of discrete-time input-output multiple-delay T-S fuzzy systems whose membership function parameters and dynamics parameters are both unknown. A multiple-delay prediction fuzzy system model with such uncertain parameters is used to form a nonlinearly parametrized estimation error. A gradient algorithm is derived, based on a nonlinear error model, to adaptively update the parameters of the feedback control law for the uncertain T-S fuzzy system. Stability and robustness of the adaptive laws are analyzed in the T-S system model framework to clarify the inherent system properties and specify the key design conditions as well. Simulation results are presented to illustrate the adaptive control design and verify the desired closed-loop system properties.

[1]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[2]  W. Marsden I and J , 2012 .

[3]  Ruiyun Qi,et al.  Adaptive control schemes for discrete-time T-S fuzzy systems with unknown parameters and actuator failures , 2011, Proceedings of the 2011 American Control Conference.

[4]  Licheng Jiao,et al.  Adaptive Backstepping Fuzzy Control for Nonlinearly Parameterized Systems With Periodic Disturbances , 2010, IEEE Transactions on Fuzzy Systems.

[5]  Yih-Guang Leu Backstepping Nonlinear Control Using Nonlinear Parametric Fuzzy Systems , 2009 .

[6]  Shi Wu-xi,et al.  Indirect adaptive fuzzy control for a class of nonlinear discrete-time systems , 2008 .

[7]  Ruiyun Qi,et al.  INDIRECT ADAPTIVE FUZZY CONTROL FOR A CLASS OF NONLINEAR SYSTEMS , 2007 .

[8]  Young-Wan Cho,et al.  T-S model based indirect adaptive fuzzy control using online parameter estimation , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[9]  Hazem N. Nounou,et al.  Stable auto-tuning of adaptive fuzzy/neural controllers for nonlinear discrete-time systems , 2004, IEEE Transactions on Fuzzy Systems.

[10]  Shuzhi Sam Ge,et al.  Stable adaptive control and estimation for nonlinear systems - neural and fuzzy approximator techniques: J. T. Spooner, M. Maggiore, R. Ordóñez, K. M. Passino, John Wiley & Sons, Inc., New York, 2002, ISBN: 0-471-41546-4 , 2003, Autom..

[11]  Gang Tao,et al.  Adaptive Control Design and Analysis , 2003 .

[12]  Wen-Shyong Yu,et al.  Fuzzy model based adaptive control for a class of nonlinear systems , 2001, IEEE Trans. Fuzzy Syst..

[13]  Hugang Han,et al.  Adaptive control of a class of nonlinear systems with nonlinearly parameterized fuzzy approximators , 2001, IEEE Trans. Fuzzy Syst..

[14]  Wang Qiang-de An Adaptive Control of a Class of Nonlinear Discrete-Time Systems , 2001 .

[15]  Hao Ying,et al.  General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators , 1998, IEEE Trans. Fuzzy Syst..

[16]  Kazuo Tanaka,et al.  Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory, and linear matrix inequalities , 1996, IEEE Trans. Fuzzy Syst..

[17]  S. Jagannathan,et al.  Adaptive fuzzy logic control of discrete-time dynamical systems , 1995, Proceedings of Tenth International Symposium on Intelligent Control.

[18]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control - design and stability analysis , 1994 .