2D layered noble metal dichalcogenides (Pt, Pd, Se, S) for electronics and energy applications

[1]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[2]  Wenguang Tu,et al.  State-of-the-art advancements of crystal facet-exposed photocatalysts beyond TiO2: Design and dependent performance for solar energy conversion and environment applications , 2020 .

[3]  G. Ryu,et al.  Striated 2D Lattice with Sub‐nm 1D Etch Channels by Controlled Thermally Induced Phase Transformations of PdSe2 , 2019, Advanced materials.

[4]  J. Warner,et al.  Increasing the electrochemical activity of basal plane sites in porous 3D edge rich MoS2 thin films for the hydrogen evolution reaction , 2019, Materials Today Energy.

[5]  G. Ryu,et al.  Atomic Structure and Dynamics of Defects and Grain Boundaries in 2D Pd2Se3 Monolayers. , 2019, ACS nano.

[6]  Pengfei Yang,et al.  Chemical Vapor Deposition Grown Large-Scale Atomically Thin Platinum Diselenide with Semimetal-Semiconductor Transition. , 2019, ACS nano.

[7]  L. Gu,et al.  Unveiling the Layer-Dependent Catalytic Activity of PtSe2 Atomic Crystals for the Hydrogen Evolution Reaction. , 2019, Angewandte Chemie.

[8]  S. Pantelides,et al.  Defect-Mediated Phase Transformation in Anisotropic Two-Dimensional PdSe2 Crystals for Seamless Electrical Contacts. , 2019, Journal of the American Chemical Society.

[9]  C. Sow,et al.  High‐Performance, Room Temperature, Ultra‐Broadband Photodetectors Based on Air‐Stable PdSe2 , 2019, Advanced materials.

[10]  Xiufeng Han,et al.  Strategy for Fabricating Wafer-Scale Platinum Disulfide. , 2019, ACS applied materials & interfaces.

[11]  Marvin A. Albao,et al.  Thickness dependent electronic properties of Pt dichalcogenides , 2019, npj 2D Materials and Applications.

[12]  J. Warner,et al.  Synthesis of Surface Grown Pt Nanoparticles on Edge-Enriched MoS2 Porous Thin Films for Enhancing Electrochemical Performance , 2019, Chemistry of Materials.

[13]  Ying Dai,et al.  PdSe2: Flexible Two-Dimensional Transition Metal Dichalcogenides Monolayer for Water Splitting Photocatalyst with Extremely Low Recombination Rate , 2018, ACS Applied Energy Materials.

[14]  David-Wei Zhang,et al.  Controlled Doping of Wafer‐Scale PtSe2 Films for Device Application , 2018, Advanced Functional Materials.

[15]  C. Sealy Alloy beats hydrogen at its own game , 2018, Materials Today.

[16]  C. Sealy Photocatalyst properties depend on the mix , 2018, Materials Today.

[17]  M. Jaroniec,et al.  Direct Z-scheme photocatalysts: Principles, synthesis, and applications , 2018, Materials Today.

[18]  Chao Xie,et al.  Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications , 2018, Advanced Functional Materials.

[19]  S. Lau,et al.  Wafer-Scale Fabrication of Two-Dimensional PtS2/PtSe2 Heterojunctions for Efficient and Broad band Photodetection. , 2018, ACS applied materials & interfaces.

[20]  M. Kanatzidis,et al.  The Thermoelectric Properties of SnSe Continue to Surprise: Extraordinary Electron and Phonon Transport , 2018, Chemistry of Materials.

[21]  J. Warner,et al.  Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. , 2018, Chemical Society reviews.

[22]  Tingting Xu,et al.  Design of 2D Layered PtSe2 Heterojunction for the High-Performance, Room-Temperature, Broadband, Infrared Photodetector , 2018, ACS Photonics.

[23]  X. Duan,et al.  Synthesis of Ultrathin Metallic MTe2 (M = V, Nb, Ta) Single‐Crystalline Nanoplates , 2018, Advanced materials.

[24]  H. Sahin,et al.  Structural, electronic and phononic properties of PtSe2: from monolayer to bulk , 2018, Semiconductor Science and Technology.

[25]  J. Kong,et al.  Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. , 2018, Chemical Society reviews.

[26]  Vivek Raj Shrestha,et al.  Solution-Synthesized High-Mobility Tellurium Nanoflakes for Short-Wave Infrared Photodetectors. , 2018, ACS nano.

[27]  Gang Zhang,et al.  Few-Layer PdSe2 Sheets: Promising Thermoelectric Materials Driven by High Valley Convergence , 2018, ACS omega.

[28]  Yeliang Wang,et al.  Construction of bilayer PdSe2 on epitaxial graphene , 2018, Nano Research.

[29]  Qi Jie Wang,et al.  Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor , 2018, Nature Communications.

[30]  Lijie Li,et al.  Strain Modulated Electronic, Mechanical, and Optical Properties of the Monolayer PdS2, PdSe2, and PtSe2 for Tunable Devices , 2018 .

[31]  Raj N. Singh,et al.  Progress in CVD synthesis of layered hexagonal boron nitride with tunable properties and their applications , 2018 .

[32]  Hua Zhang,et al.  High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals , 2018, Nature Chemistry.

[33]  Chuanghan Hsu,et al.  A library of atomically thin metal chalcogenides , 2018, Nature.

[34]  Pengfei Yang,et al.  Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil , 2018, Communications Chemistry.

[35]  Pengfei Yang,et al.  Application of chemical vapor–deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction , 2018, Nano Research.

[36]  A. Kis,et al.  Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide , 2018, Nature Communications.

[37]  L. Wan,et al.  Air-Stable In-Plane Anisotropic GeSe2 for Highly Polarization-Sensitive Photodetection in Short Wave Region. , 2018, Journal of the American Chemical Society.

[38]  Volodymyr B. Koman,et al.  Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS2 :hBN:MoS2 Heterostructures for Exciton Energy Transfer. , 2018, Small.

[39]  G. Gao,et al.  Monolayer PdSe2: A promising two-dimensional thermoelectric material , 2018, Scientific Reports.

[40]  Yury Gogotsi,et al.  Metallic MXenes: A New Family of Materials for Flexible Triboelectric Nanogenerators , 2018 .

[41]  J. Warner,et al.  Large Dendritic Monolayer MoS2 Grown by Atmospheric Pressure Chemical Vapor Deposition for Electrocatalysis. , 2018, ACS applied materials & interfaces.

[42]  Nirpendra Singh,et al.  Strongly bound excitons in monolayer PtS2 and PtSe2 , 2018 .

[43]  Yong-Wei Zhang,et al.  Structure, Stability, and Kinetics of Vacancy Defects in Monolayer PtSe2: A First-Principles Study , 2017, ACS omega.

[44]  G. Heymann,et al.  Crystal Structures of the High‐Pressure Palladium Dichalcogenides Pd0.94(1)S2 and Pd0.88(1)Se2 Comprising Exceptional PdIV Oxidation States , 2017 .

[45]  L. Gu,et al.  Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst , 2017, Nature Communications.

[46]  J. Hartmann,et al.  Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmons. , 2017, Optics express.

[47]  L. Gu,et al.  Vanadium Diselenide Single Crystals: Van der Waals Epitaxial Growth of 2D Metallic Vanadium Diselenide Single Crystals and their Extra‐High Electrical Conductivity (Adv. Mater. 37/2017) , 2017 .

[48]  Peng Yu,et al.  PdSe2: Pentagonal Two-Dimensional Layers with High Air Stability for Electronics. , 2017, Journal of the American Chemical Society.

[49]  C. Felser,et al.  Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2 , 2017 .

[50]  Xing Wu,et al.  In Situ Transmission Electron Microscopy Characterization and Manipulation of Two-Dimensional Layered Materials beyond Graphene. , 2017, Small.

[51]  Jay B. Patel,et al.  Near‐Infrared and Short‐Wavelength Infrared Photodiodes Based on Dye–Perovskite Composites , 2017 .

[52]  Li-dong Zhao,et al.  Promising Thermoelectric Bulk Materials with 2D Structures , 2017, Advanced materials.

[53]  S. Pantelides,et al.  A novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2 , 2017, Microscopy and Microanalysis.

[54]  P. Lian,et al.  Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review , 2017, Journal of Materials Science.

[55]  G. Heymann,et al.  Verbeekite, the Long-Unknown Crystal Structure of Monoclinic PdSe2. , 2017, Inorganic chemistry.

[56]  K. Novoselov,et al.  Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production , 2017, Nature Communications.

[57]  Changsheng Song,et al.  Enhanced Superconductivity in Restacked TaS2 Nanosheets. , 2017, Journal of the American Chemical Society.

[58]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[59]  S. Goossens,et al.  Broadband image sensor array based on graphene–CMOS integration , 2017, Nature Photonics.

[60]  Wei Liu,et al.  Chemical Vapor Deposition of Large-Size Monolayer MoSe2 Crystals on Molten Glass. , 2017, Journal of the American Chemical Society.

[61]  J. Warner,et al.  Edge-Enriched 2D MoS2 Thin Films Grown by Chemical Vapor Deposition for Enhanced Catalytic Performance , 2017 .

[62]  Qiang Li,et al.  Facile Synthesis of Single Crystal PtSe2 Nanosheets for Nanoscale Electronics , 2016, Advanced materials.

[63]  San-Dong Guo,et al.  Biaxial strain tuned thermoelectric properties in monolayer PtSe2 , 2016 .

[64]  Guangjian Wu,et al.  Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect , 2016, Nanotechnology.

[65]  P. Ajayan,et al.  Solid-Vapor Reaction Growth of Transition-Metal Dichalcogenide Monolayers. , 2016, Angewandte Chemie.

[66]  J. Tominaga,et al.  Two-Dimensional Transition-Metal Dichalcogenides , 2016 .

[67]  Peng Zhou,et al.  Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe2 Nanosheets. , 2016, ACS nano.

[68]  L. Bian,et al.  Visible to short wavelength infrared In2Se3-nanoflake photodetector gated by a ferroelectric polymer , 2016, Nanotechnology.

[69]  Conor P. Cullen,et al.  High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature. , 2016, ACS nano.

[70]  W. Oh,et al.  Demonstration of enhanced the photocatalytic effect with PtSe2 and TiO2 treated large area graphene obtained by CVD method , 2016 .

[71]  Gautam Gupta,et al.  Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction , 2016, Nature Communications.

[72]  Martin Pumera,et al.  Layered Platinum Dichalcogenides (PtS2, PtSe2, and PtTe2) Electrocatalysis: Monotonic Dependence on the Chalcogen Size , 2016 .

[73]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[74]  Hao Jiang,et al.  Black Phosphorus Mid-Infrared Photodetectors with High Gain. , 2016, Nano letters.

[75]  S. Koester,et al.  Band Alignment of 2D Semiconductors for Designing Heterostructures with Momentum Space Matching , 2016, 1603.02619.

[76]  P. Ajayan,et al.  Synthesis of Millimeter‐Scale Transition Metal Dichalcogenides Single Crystals , 2016 .

[77]  Peng Yu,et al.  Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2 , 2016, Advanced materials.

[78]  P. Miró,et al.  A Single‐Material Logical Junction Based on 2D Crystal PdS2 , 2016, Advanced materials.

[79]  Umberto Ravaioli,et al.  Electronic and thermal transport study of sinusoidally corrugated nanowires aiming to improve thermoelectric efficiency , 2016, Nanotechnology.

[80]  Robert Vajtai,et al.  Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction. , 2016, Nano letters.

[81]  Jannik C. Meyer,et al.  Raman characterization of platinum diselenide thin films , 2015, 1512.09317.

[82]  Kai Xu,et al.  Ultrasensitive Phototransistors Based on Few‐Layered HfS2 , 2015, Advanced materials.

[83]  R. Yu,et al.  Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. , 2015, Chemical Society reviews.

[84]  K. Thygesen,et al.  Simple Screened Hydrogen Model of Excitons in Two-Dimensional Materials. , 2015, Physical review letters.

[85]  Andrey Klots,et al.  Hot Electron-Based Near-Infrared Photodetection Using Bilayer MoS2. , 2015, Nano letters.

[86]  M. Dresselhaus,et al.  Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more , 2015 .

[87]  M. Pumera,et al.  Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. , 2015, Chemical reviews.

[88]  M. Bosi Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review , 2015 .

[89]  Majid Beidaghi,et al.  Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). , 2015, ACS nano.

[90]  K. T. Law,et al.  Ising pairing in superconducting NbSe2 atomic layers , 2015, Nature Physics.

[91]  Myung-Ho Bae,et al.  Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays , 2015, Scientific Reports.

[92]  Yeliang Wang,et al.  Monolayer PtSe₂, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. , 2015, Nano letters.

[93]  Yi Cui,et al.  Physical and chemical tuning of two-dimensional transition metal dichalcogenides. , 2015, Chemical Society reviews.

[94]  Lain-Jong Li,et al.  Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. , 2015, Chemical Society reviews.

[95]  Yu Zhang,et al.  Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. , 2015, Chemical Society reviews.

[96]  Hua Zhang,et al.  Two-dimensional transition metal dichalcogenide (TMD) nanosheets. , 2015, Chemical Society reviews.

[97]  M. S. Jeong,et al.  Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. , 2015, ACS nano.

[98]  Zhichun Liu,et al.  A Revisit to High Thermoelectric Performance of Single-layer MoS2 , 2015, Scientific Reports.

[99]  Junsong Yuan,et al.  Exploring atomic defects in molybdenum disulphide monolayers , 2015, Nature Communications.

[100]  Y. Kawazoe,et al.  Penta-graphene: A new carbon allotrope , 2015, Proceedings of the National Academy of Sciences.

[101]  Ruitao Lv,et al.  Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. , 2015, Accounts of chemical research.

[102]  B. Jonker,et al.  Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2 , 2014, 1412.2156.

[103]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[104]  Hao Jiang,et al.  Black phosphorus radio-frequency transistors. , 2014, Nano letters.

[105]  S. Haigh,et al.  Production of few-layer phosphorene by liquid exfoliation of black phosphorus. , 2014, Chemical communications.

[106]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[107]  F. Guinea,et al.  Electronic properties of single‐layer and multilayer transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se) , 2014, 1410.2154.

[108]  Lei Zhu,et al.  Optical and photocatalytic properties of novel heterogeneous PtSe2-graphene/TiO2 nanocomposites synthesized via ultrasonic assisted techniques. , 2014, Ultrasonics sonochemistry.

[109]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[110]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[111]  S. Louie,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[112]  S. Pantelides,et al.  Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. , 2014, Nano letters.

[113]  P. Miró,et al.  Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides. , 2014, Angewandte Chemie.

[114]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[115]  X. Duan,et al.  Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties. , 2014, Journal of the American Chemical Society.

[116]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[117]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[118]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[119]  Zhi-Xun Shen,et al.  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[120]  R. Hennig,et al.  Theoretical perspective of photocatalytic properties of single-layer SnS 2 , 2013 .

[121]  A. M. van der Zande,et al.  Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. , 2013, Physical review letters.

[122]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[123]  Zhihua Chen,et al.  Remarkable order of a high-performance polymer. , 2013, Nano letters.

[124]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[125]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[126]  Qi Jie Wang,et al.  Broadband high photoresponse from pure monolayer graphene photodetector , 2013, Nature Communications.

[127]  Vinayak P. Dravid,et al.  High performance bulk thermoelectrics via a panoscopic approach , 2013 .

[128]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[129]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[130]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature materials.

[131]  G. Eda,et al.  Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution. , 2012, Nature materials.

[132]  H. Hosono,et al.  T(c) maximum in solid solution of pyrite IrSe2-RhSe2 induced by destabilization of anion dimers. , 2012, Journal of the American Chemical Society.

[133]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[134]  H. Mizoguchi,et al.  Superconductivity in defective pyrite-type iridium chalcogenides Ir(x)Ch2 Ch = Se and Te. , 2012, Physical review letters.

[135]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[136]  H. Zeng,et al.  Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides , 2012, Scientific Reports.

[137]  E. Leite,et al.  Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. , 2012, Chemical communications.

[138]  Simon Kurasch,et al.  Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. , 2012, Physical review letters.

[139]  Jinyeong Lee,et al.  Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. , 2012, Nano letters.

[140]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[141]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[142]  Sushil Auluck,et al.  Normal state and superconducting properties of Rh17S15 and Pd17Se15 , 2011, Superconductor Science and Technology.

[143]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[144]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[145]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[146]  Ivo Rendina,et al.  Near-Infrared Sub-Bandgap All-Silicon Photodetectors: State of the Art and Perspectives , 2010, Sensors.

[147]  Sushil Auluck,et al.  `17-15' Superconductivity - Rh17S15 and Pd17Se15 , 2010, 1011.4809.

[148]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[149]  M. Bouroushian Electrochemistry of Metal Chalcogenides , 2010 .

[150]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[151]  Andrew B. Kahng,et al.  Scaling: More than Moore's law , 2010, IEEE Design & Test of Computers.

[152]  J. Honig,et al.  Magnetism, structure, and charge correlation at a pressure-induced Mott-Hubbard insulator-metal transition , 2010, 1004.1837.

[153]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[154]  F. Xia,et al.  Ultrafast graphene photodetector. , 2009, Nature nanotechnology.

[155]  C. B. Vining An inconvenient truth about thermoelectrics. , 2009, Nature materials.

[156]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[157]  R. McCreery,et al.  Advanced carbon electrode materials for molecular electrochemistry. , 2008, Chemical reviews.

[158]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[159]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[160]  M. McMahon,et al.  High-pressure structures and phase transformations in elemental metals. , 2006, Chemical Society reviews.

[161]  R. Cava,et al.  Superconductivity in CuxTiSe2 , 2006, cond-mat/0606529.

[162]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[163]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[164]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[165]  P. Petit,et al.  Experimental and theoretical investigation on the relative stability of the PdS2- and pyrite-type structures of PdSe2. , 2004, Inorganic chemistry.

[166]  M. Whangbo,et al.  Trends in the structure and bonding in the layered platinum dioxide and dichalcogenides PtQ2 (Q=O, S, Se, Te) , 2003 .

[167]  S. Zwaag,et al.  Grain Nucleation and Growth During Phase Transformations , 2002, Science.

[168]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[169]  S. Jobic,et al.  Occurrence and characterization of anionic bondings in transition metal dichalcogenides , 1992 .

[170]  H. Okamoto The pd-se (palladium-selenium) system , 1992 .

[171]  G. Guo,et al.  The electronic structures of platinum dichalcogenides: PtS2, PtSe2 and PtTe2 , 1986 .

[172]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[173]  R. A. Farrar,et al.  Influence of oxygen-rich inclusions on the γ→α phase transformation in high-strength low-alloy (HSLA) steel weld metals , 1981 .

[174]  F. Grønvold,et al.  Phase Relationships of Palladium Selenides. , 1979 .

[175]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[176]  F. Grønvold,et al.  The crystal structure of PdSe2 and PdS2 , 1957 .

[177]  Charlie Tsai,et al.  Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. , 2016, Nature materials.

[178]  Andras Kis,et al.  MoS2 and semiconductors in the flatland , 2015 .

[179]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[180]  Douglas G. Brookins,et al.  Eh-PH diagrams for geochemistry , 1988 .

[181]  G. Kliche Far-infrared and X-ray investigations of the mixed platinum dichalcogenides PtS2−xSex, PtSe2−xTex, and PtS2−xTex , 1985 .

[182]  S. Gronowitz,et al.  Redetermined Crystal Structures of NiTe2, PdTe2, PtS2, PtSe2, and PtTe2. , 1965 .

[183]  F. Grønvold,et al.  High Temperature X-Ray Study of the Thermal Expansion of PtS2, PtSe2, PtTe2 and PdTe2. , 1959 .