On the Lipschitz Modulus of the Argmin Mapping in Linear Semi-Infinite Optimization
暂无分享,去创建一个
[1] Jan-J. Rückmann. On existence and uniqueness of stationary points in semi-infinite optimization , 1999, Math. Program..
[2] M. Kojima. Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .
[3] F. Javier Toledo-Moreo,et al. Lipschitz Continuity of the Optimal Value via Bounds on the Optimal Set in Linear Semi-Infinite Optimization , 2006, Math. Oper. Res..
[4] Marco A. López,et al. Stability and Well-Posedness in Linear Semi-Infinite Programming , 1999, SIAM J. Optim..
[5] Marco A. López,et al. Metric regularity of semi-infinite constraint systems , 2005, Math. Program..
[6] F. Nožička. Theorie der linearen parametrischen Optimierung , 1974 .
[7] M. A. López-Cerdá,et al. Linear Semi-Infinite Optimization , 1998 .
[8] Marco A. López,et al. Stability Theory for Linear Inequality Systems , 1996, SIAM J. Matrix Anal. Appl..
[9] Wu Li. The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program , 1993 .
[10] D. Klatte,et al. Metric regularity of the feasible set mapping in semi-infinite optimization , 1994 .
[11] Nondegeneracy and Quantitative Stability of Parameterized Optimization Problems with Multiple Solutions , 1998, SIAM J. Optim..
[12] R. Rockafellar,et al. The radius of metric regularity , 2002 .
[13] B. Bank,et al. Non-Linear Parametric Optimization , 1983 .
[14] Wu Li. Sharp Lipschitz Constants for Basic Optimal Solutions and Basic Feasible Solutions of Linear Programs , 1994 .
[15] A. Ioffe. Metric regularity and subdifferential calculus , 2000 .
[16] Wu Li,et al. Abadie's Constraint Qualification, Metric Regularity, and Error Bounds for Differentiable Convex Inequalities , 1997, SIAM J. Optim..
[17] James Renegar,et al. Linear programming, complexity theory and elementary functional analysis , 1995, Math. Program..
[18] S. M. Robinson. Analysis and computation of fixed points , 1980 .
[19] L. Collatz,et al. F. Nožiêka/J. Guddat/H. Hollatz/B. Bank, Theorie der linearen parametrischen Optimierung. 312 S., Berlin 1974. Akademie‐Verlag. Preis 52,‐ M , 2007 .
[20] B. Mordukhovich. Variational analysis and generalized differentiation , 2006 .
[21] Bruno Brosowski,et al. Parametric semi-infinite linear programming I. continuity of the feasible set and of the optimal value , 1984 .
[22] R. Tyrrell Rockafellar,et al. Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets , 1996, SIAM J. Optim..
[23] Elijah Polak,et al. Semi-Infinite Optimization , 1997 .
[24] Diethard Klatte,et al. On Procedures for Analysing Parametric Optimization Problems , 1982 .
[25] Diethard Klatte. Stability of Stationary Solutions in Semi-Infinite Optimization via the Reduction Approach , 1992 .
[26] D. Klatte. Nonsmooth equations in optimization , 2002 .
[27] Marco A. López,et al. Metric Regularity in Convex Semi-Infinite Optimization under Canonical Perturbations , 2007, SIAM J. Optim..
[28] Diethard Klatte,et al. Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .
[29] Xi Yin Zheng,et al. Metric Regularity and Constraint Qualifications for Convex Inequalities on Banach Spaces , 2003, SIAM J. Optim..
[30] Felipe Cucker,et al. Unifying Condition Numbers for Linear Programming , 2003, Math. Oper. Res..
[31] R. Poliquin,et al. Characterizing the Single-Valuedness of Multifunctions , 1997 .
[32] Diethard Klatte,et al. Strong Lipschitz Stability of Stationary Solutions for Nonlinear Programs and Variational Inequalities , 2005, SIAM J. Optim..