On the Lipschitz Modulus of the Argmin Mapping in Linear Semi-Infinite Optimization

This paper is devoted to quantify the Lipschitzian behavior of the optimal solutions set in linear optimization under perturbations of the objective function and the right hand side of the constraints (inequalities). In our model, the set indexing the constraints is assumed to be a compact metric space and all coefficients depend continuously on the index. The paper provides a lower bound on the Lipschitz modulus of the optimal set mapping (also called argmin mapping), which, under our assumptions, is single-valued and Lipschitz continuous near the nominal parameter. This lower bound turns out to be the exact modulus in ordinary linear programming, as well as in the semi-infinite case under some additional hypothesis which always holds for dimensions n ⩽ 3. The expression for the lower bound (or exact modulus) only depends on the nominal problem’s coefficients, providing an operative formula from the practical side, specially in the particular framework of ordinary linear programming, where it constitutes the sharp Lipschitz constant. In the semi-infinite case, the problem of whether or not the lower bound equals the exact modulus for n > 3 under weaker hypotheses (or none) remains as an open problem.

[1]  Jan-J. Rückmann On existence and uniqueness of stationary points in semi-infinite optimization , 1999, Math. Program..

[2]  M. Kojima Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .

[3]  F. Javier Toledo-Moreo,et al.  Lipschitz Continuity of the Optimal Value via Bounds on the Optimal Set in Linear Semi-Infinite Optimization , 2006, Math. Oper. Res..

[4]  Marco A. López,et al.  Stability and Well-Posedness in Linear Semi-Infinite Programming , 1999, SIAM J. Optim..

[5]  Marco A. López,et al.  Metric regularity of semi-infinite constraint systems , 2005, Math. Program..

[6]  F. Nožička Theorie der linearen parametrischen Optimierung , 1974 .

[7]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[8]  Marco A. López,et al.  Stability Theory for Linear Inequality Systems , 1996, SIAM J. Matrix Anal. Appl..

[9]  Wu Li The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program , 1993 .

[10]  D. Klatte,et al.  Metric regularity of the feasible set mapping in semi-infinite optimization , 1994 .

[11]  Nondegeneracy and Quantitative Stability of Parameterized Optimization Problems with Multiple Solutions , 1998, SIAM J. Optim..

[12]  R. Rockafellar,et al.  The radius of metric regularity , 2002 .

[13]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[14]  Wu Li Sharp Lipschitz Constants for Basic Optimal Solutions and Basic Feasible Solutions of Linear Programs , 1994 .

[15]  A. Ioffe Metric regularity and subdifferential calculus , 2000 .

[16]  Wu Li,et al.  Abadie's Constraint Qualification, Metric Regularity, and Error Bounds for Differentiable Convex Inequalities , 1997, SIAM J. Optim..

[17]  James Renegar,et al.  Linear programming, complexity theory and elementary functional analysis , 1995, Math. Program..

[18]  S. M. Robinson Analysis and computation of fixed points , 1980 .

[19]  L. Collatz,et al.  F. Nožiêka/J. Guddat/H. Hollatz/B. Bank, Theorie der linearen parametrischen Optimierung. 312 S., Berlin 1974. Akademie‐Verlag. Preis 52,‐ M , 2007 .

[20]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[21]  Bruno Brosowski,et al.  Parametric semi-infinite linear programming I. continuity of the feasible set and of the optimal value , 1984 .

[22]  R. Tyrrell Rockafellar,et al.  Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets , 1996, SIAM J. Optim..

[23]  Elijah Polak,et al.  Semi-Infinite Optimization , 1997 .

[24]  Diethard Klatte,et al.  On Procedures for Analysing Parametric Optimization Problems , 1982 .

[25]  Diethard Klatte Stability of Stationary Solutions in Semi-Infinite Optimization via the Reduction Approach , 1992 .

[26]  D. Klatte Nonsmooth equations in optimization , 2002 .

[27]  Marco A. López,et al.  Metric Regularity in Convex Semi-Infinite Optimization under Canonical Perturbations , 2007, SIAM J. Optim..

[28]  Diethard Klatte,et al.  Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .

[29]  Xi Yin Zheng,et al.  Metric Regularity and Constraint Qualifications for Convex Inequalities on Banach Spaces , 2003, SIAM J. Optim..

[30]  Felipe Cucker,et al.  Unifying Condition Numbers for Linear Programming , 2003, Math. Oper. Res..

[31]  R. Poliquin,et al.  Characterizing the Single-Valuedness of Multifunctions , 1997 .

[32]  Diethard Klatte,et al.  Strong Lipschitz Stability of Stationary Solutions for Nonlinear Programs and Variational Inequalities , 2005, SIAM J. Optim..