Ligand and temperature effects of porous palladium nanoparticle ensembles with grain boundaries for highly efficient electrocatalytic CO2 reduction

[1]  Shengjie Peng,et al.  In situ construction of thiol-silver interface for selectively electrocatalytic CO2 reduction , 2021, Nano Research.

[2]  Yadong Li,et al.  MOF Encapsulating N-Heterocyclic Carbene-Ligated Copper Single-Atom Site Catalyst towards Efficient Methane Electrosynthesis. , 2021, Angewandte Chemie.

[3]  Q. Yan,et al.  MXenes as a versatile platform for reactive surface modification and superior sodium‐ion storages , 2021, Exploration.

[4]  Junwu Zhu,et al.  Biomimetic assembly to superplastic metal–organic framework aerogels for hydrogen evolution from seawater electrolysis , 2021, Exploration.

[5]  Dingsheng Wang,et al.  Design concept for electrocatalysts , 2021, Nano Research.

[6]  Hyuck-Mo Lee,et al.  Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential , 2021, Nano Research.

[7]  Yawen Jiang,et al.  Cu2−xS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion , 2021, Nano Research.

[8]  Qinghua Zhang,et al.  Supported Pd2 Dual-atom Site Catalyst for Efficient Electrochemical CO2 Reduction. , 2021, Angewandte Chemie.

[9]  H. Park,et al.  Selectively Converting Carbon Dioxide to Syngas over Intermetallic AuCu Catalysts , 2021 .

[10]  Qinghua Zhang,et al.  Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. , 2020, Angewandte Chemie.

[11]  Jingguang G. Chen,et al.  Boosting Activity and Selectivity of CO2 Electroreduction by Pre-Hydridizing Pd Nanocubes. , 2020, Small.

[12]  Jie Yu,et al.  Quantifying Electrocatalytic Reduction of CO2 on Twin Boundaries , 2020, Chem.

[13]  Young Eun Kim,et al.  Highly tunable syngas production by electrocatalytic reduction of CO2 using Ag/TiO2 catalysts , 2020 .

[14]  Sean C. Smith,et al.  Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO2 Reduction. , 2020, Angewandte Chemie.

[15]  Jingguang G. Chen,et al.  Electrochemical Conversion of CO2 to Syngas with Palladium-Based Electrocatalysts. , 2020, Accounts of chemical research.

[16]  C. Louis,et al.  Additive-Free Aqueous Phase Synthesis of Formic Acid by Direct CO2 Hydrogenation over a PdAg Catalyst on a Hydrophilic N-Doped Polymer–Silica Composite Support with High CO2 Affinity , 2020 .

[17]  A. Naldoni,et al.  Syngas Evolution from CO2 Electroreduction by Porous Au Nanostructures , 2020, ACS applied energy materials.

[18]  J. Cairney,et al.  Tuneable Syngas Production through CO2 Electroreduction on Cobalt-Carbon Composite Electrocatalyst. , 2020, ACS applied materials & interfaces.

[19]  Yadong Li,et al.  PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption , 2019, Nano Research.

[20]  A. Bond,et al.  Electrohydrogenation of Carbon Dioxide Using a Ternary Pd/Cu2O-Cu Catalyst. , 2019, ChemSusChem.

[21]  H. Fu,et al.  Porous Palladium Nanomeshes with Enhanced Electrochemical CO2 -into-Syngas Conversion over a Wider Applied Potential. , 2019, ChemSusChem.

[22]  Hao Yu,et al.  Efficient electrochemical reduction of CO2 into CO promoted by sulfur vacancies , 2019, Nano Energy.

[23]  X. Lou,et al.  Efficient Electrochemical Reduction of CO2 to HCOOH over Sub-2 nm SnO2 Quantum Wires with Exposed Grain Boundaries. , 2019, Angewandte Chemie.

[24]  Jingguang G. Chen,et al.  Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes , 2019, Nature Catalysis.

[25]  Mengxin Chen,et al.  Photoelectrochemical CO2 reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO2/Au photocathodes with low onset potentials , 2019, Energy & Environmental Science.

[26]  Haotian Wang,et al.  Large-Scale and Highly Selective CO2 Electrocatalytic Reduction on Nickel Single-Atom Catalyst , 2019, Joule.

[27]  Jingguang G. Chen,et al.  Shape‐Controlled CO2 Electrochemical Reduction on Nanosized Pd Hydride Cubes and Octahedra , 2019, Advanced Energy Materials.

[28]  Dexin Yang,et al.  Highly Efficient Electroreduction of CO2 to Methanol on Palladium-Copper Bimetallic Aerogels. , 2018, Angewandte Chemie.

[29]  N. Zheng,et al.  Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO2 Nanosheets with Abundant Pd-O-Sn Interfaces. , 2018, Angewandte Chemie.

[30]  Weiqing Zhang,et al.  Ultrathin Ag Nanowires Electrode for Electrochemical Syngas Production from Carbon Dioxide , 2018 .

[31]  Zhenhui Kang,et al.  A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas , 2017, Nature Communications.

[32]  Jinlong Gong,et al.  Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and their Related Reaction Mechanisms. , 2017, Angewandte Chemie.

[33]  Jingguang G. Chen,et al.  Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios , 2017 .

[34]  X. Bao,et al.  Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles , 2017, Nano Research.

[35]  Jinlong Yang,et al.  Understanding of Strain Effects in the Electrochemical Reduction of CO2 : Using Pd Nanostructures as an Ideal Platform. , 2017, Angewandte Chemie.

[36]  Cecilia Mondelli,et al.  Status and prospects in higher alcohols synthesis from syngas. , 2017, Chemical Society reviews.

[37]  Z. Mi,et al.  Tunable Syngas Production from CO2 and H2 O in an Aqueous Photoelectrochemical Cell. , 2016, Angewandte Chemie.

[38]  C. J. Weststrate,et al.  Spectroscopic insights into cobalt-catalyzed Fischer-Tropsch synthesis: A review of the carbon monoxide interaction with single crystalline surfaces of cobalt , 2016 .

[39]  Qiang Sun,et al.  Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons , 2016 .

[40]  N. Umezawa,et al.  Mesoporous palladium–copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO2 to CO , 2016 .

[41]  Q. Fu,et al.  Selective conversion of syngas to light olefins , 2016, Science.

[42]  Maor F. Baruch,et al.  Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. , 2015, Chemical reviews.

[43]  F. Calle‐Vallejo,et al.  Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. , 2015, The journal of physical chemistry letters.

[44]  X. Bao,et al.  pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles , 2015 .

[45]  X. Bao,et al.  Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. , 2015, Journal of the American Chemical Society.

[46]  M. Lázaro,et al.  Pd catalysts supported onto nanostructured carbon materials for CO2 valorization by electrochemical reduction , 2015 .

[47]  Christos T. Maravelias,et al.  Fuel production from CO2 using solar-thermal energy: system level analysis , 2012 .

[48]  T. Schildhauer,et al.  Production of synthetic natural gas (SNG) from coal and dry biomass - A technology review from 1950 to 2009 , 2010 .

[49]  Wei-Ping Pan,et al.  Synthesis Gas Production with an Adjustable H2/CO Ratio through the Coal Gasification Process: Effects of Coal Ranks And Methane Addition , 2008 .

[50]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[51]  I. Wender Reactions of synthesis gas , 1996 .

[52]  Masaki Ito,et al.  An enhanced electrochemical CO2 reduction reaction on the SnOx–PdO surface of SnPd nanoparticles decorated on N-doped carbon fibers , 2021 .