Efficient and Robust Shape Correspondence via Sparsity-Enforced Quadratic Assignment

In this work, we introduce a novel local pairwise descriptor and then develop a simple, effective iterative method to solve the resulting quadratic assignment through sparsity control for shape correspondence between two approximate isometric surfaces. Our pairwise descriptor is based on the stiffness and mass matrix of finite element approximation of the Laplace-Beltrami differential operator, which is local in space, sparse to represent, and extremely easy to compute while containing global information. It allows us to deal with open surfaces, partial matching, and topological perturbations robustly. To solve the resulting quadratic assignment problem efficiently, the two key ideas of our iterative algorithm are: 1) select pairs with good (approximate) correspondence as anchor points, 2) solve a regularized quadratic assignment problem only in the neighborhood of selected anchor points through sparsity control. These two ingredients can improve and increase the number of anchor points quickly while reducing the computation cost in each quadratic assignment iteration significantly. With enough high-quality anchor points, one may use various pointwise global features with reference to these anchor points to further improve the dense shape correspondence. We use various experiments to show the efficiency, quality, and versatility of our method on large data sets, patches, and point clouds (without global meshes).

[1]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[2]  Alexander M. Bronstein,et al.  A game-theoretic approach to deformable shape matching , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[4]  Hans-Peter Seidel,et al.  Intrinsic Shape Matching by Planned Landmark Sampling , 2011, Comput. Graph. Forum.

[5]  Wei Zeng,et al.  Discrete Laplace-Beltrami Operator Determines Discrete Riemannian Metric , 2010, ArXiv.

[6]  Arthur W. Toga,et al.  Metric-induced optimal embedding for intrinsic 3D shape analysis , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[8]  Sebastian Thrun,et al.  The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces , 2004, NIPS.

[9]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[10]  Nikos Paragios,et al.  Discrete Minimum Distortion Correspondence Problems for Non-rigid Shape Matching , 2011, SSVM.

[11]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[12]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[14]  Alexander M. Bronstein,et al.  Self-supervised Learning of Dense Shape Correspondence , 2018, ArXiv.

[15]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[16]  Andrea Torsello,et al.  Spatial Maps: From Low Rank Spectral to Sparse Spatial Functional Representations , 2017, 2017 International Conference on 3D Vision (3DV).

[17]  Stefan Gumhold,et al.  Feature Extraction From Point Clouds , 2001, IMR.

[18]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[19]  Facundo Mémoli,et al.  Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..

[20]  Alexander M. Bronstein,et al.  Graph matching: relax or not? , 2014, ArXiv.

[21]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[22]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[23]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[24]  Michael M. Bronstein,et al.  Nonisometric Surface Registration via Conformal Laplace–Beltrami Basis Pursuit , 2018, Journal of Scientific Computing.

[25]  Ron Kimmel,et al.  Spectral Generalized Multi-dimensional Scaling , 2013, International Journal of Computer Vision.

[26]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[27]  Ron Kimmel,et al.  Unsupervised Learning of Dense Shape Correspondence , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Ron Kimmel,et al.  Approximately Isometric Shape Correspondence by Matching pointwise Spectral Features and Global Geodesic Structures , 2011, Adv. Data Sci. Adapt. Anal..

[29]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[30]  Vladlen Koltun,et al.  Robust Nonrigid Registration by Convex Optimization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[31]  Yaron Lipman,et al.  DS++ , 2017, ACM Trans. Graph..

[32]  P. Bérard,et al.  Embedding Riemannian manifolds by their heat kernel , 1994 .

[33]  Daniela Giorgi,et al.  Discrete Laplace-Beltrami operators for shape analysis and segmentation , 2009, Comput. Graph..

[34]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[35]  Daniel Cremers,et al.  Efficient Deformable Shape Correspondence via Kernel Matching , 2017, 2017 International Conference on 3D Vision (3DV).

[36]  Hongkai Zhao,et al.  A local mesh method for solving PDEs on point clouds , 2013 .

[37]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[38]  M. Ebert Matthias Ebert Scale-invariant heat kernel signatures for non-rigid shape recognition Scale-invariant heat kernel signatures for non-rigid shape recognition , 2015 .

[39]  Rongjie Lai,et al.  Multiscale Nonrigid Point Cloud Registration Using Rotation-Invariant Sliced-Wasserstein Distance via Laplace-Beltrami Eigenmap , 2017, SIAM J. Imaging Sci..

[40]  Daniel Cremers,et al.  Product Manifold Filter: Non-rigid Shape Correspondence via Kernel Density Estimation in the Product Space , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Ronen Basri,et al.  Tight relaxation of quadratic matching , 2015, SGP '15.

[42]  Y. Aflalo,et al.  On convex relaxation of graph isomorphism , 2015, Proceedings of the National Academy of Sciences.

[43]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[45]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .