Highly efficient graphene terahertz modulator with tunable electromagnetically induced transparency-like transmission

[1]  Feng Liu,et al.  Investigation of terahertz high Q-factor of all-dielectric metamaterials , 2022, Optics & Laser Technology.

[2]  R. Ruoff,et al.  Wafer-scale single-crystal monolayer graphene grown on sapphire substrate , 2022, Nature Materials.

[3]  Xiaoyong He,et al.  3D Dirac Semimetal Supported Tunable TE Modes , 2022, Annalen der Physik.

[4]  D. Mittleman,et al.  A review of terahertz phase modulation from free space to guided wave integrated devices , 2021, Nanophotonics.

[5]  Xiaoyong He,et al.  Tunable terahertz Dirac-semimetal hybrid plasmonic waveguides , 2021, Optical Materials Express.

[6]  Y. Zou,et al.  Terahertz binary coder based on graphene metasurface , 2021 .

[7]  X. Tao,et al.  Recent progress in terahertz modulation using photonic structures based on two‐dimensional materials , 2021, InfoMat.

[8]  R. Ruoff,et al.  Single-crystal, large-area, fold-free monolayer graphene , 2021, Nature.

[9]  M. Naftaly,et al.  Terahertz and Microwave Optical Properties of Single-Crystal Quartz and Vitreous Silica and the Behavior of the Boson Peak , 2021, Applied Sciences.

[10]  Linjie Zhou,et al.  A Review on Terahertz Technologies Accelerated by Silicon Photonics , 2021, Nanomaterials.

[11]  Soeun Kim,et al.  Ultra-compact integrated terahertz modulator based on a graphene metasurface. , 2021, Optics letters.

[12]  F. Liu,et al.  Investigation of graphene supported terahertz elliptical metamaterials , 2020 .

[13]  T. Low,et al.  Complete Complex Amplitude Modulation with Electronically Tunable Graphene Plasmonic Metamolecules. , 2020, ACS nano.

[14]  Y. Mei,et al.  2D-material-integrated whispering-gallery-mode microcavity , 2019, Photonics Research.

[15]  R. Ruoff,et al.  Adlayer‐Free Large‐Area Single Crystal Graphene Grown on a Cu(111) Foil , 2019, Advanced materials.

[16]  Ziqiang Yang,et al.  A Review of THz Modulators with Dynamic Tunable Metasurfaces , 2019, Nanomaterials.

[17]  J. Liu,et al.  Modulators for Terahertz Communication: The Current State of the Art , 2019, Research.

[18]  Sun-Goo Lee,et al.  Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures , 2017 .

[19]  L K Oxenløwe,et al.  Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. , 2016, Nanoscale.

[20]  Jong-Moon Park,et al.  Electromagnetically induced transparency based on guided-mode resonances. , 2015, Optics letters.

[21]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[22]  Sangin Kim,et al.  Plasmon-Induced Transparency in Coupled Graphene Gratings , 2015, Plasmonics.

[23]  Sangin Kim,et al.  Optical reflection modulation using surface plasmon resonance in a graphene-embedded hybrid plasmonic waveguide at an optical communication wavelength. , 2015, Optics letters.

[24]  Jérôme Faist,et al.  Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons , 2015, Nature Communications.

[25]  Lianmao Peng,et al.  How good can CVD-grown monolayer graphene be? , 2014, Nanoscale.

[26]  H. Beere,et al.  Terahertz optical modulator based on metamaterial splitring resonators and graphene , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[27]  Min-Suk Kwon Discussion of the Epsilon-Near-Zero Effect of Graphene in a Horizontal Slot Waveguide , 2014, IEEE Photonics Journal.

[28]  P. Ajayan,et al.  High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. , 2014, Nano letters.

[29]  P. Avouris,et al.  Graphene plasmonics for terahertz to mid-infrared applications. , 2014, ACS nano.

[30]  Mattias Beck,et al.  Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. , 2013, Nano letters.

[31]  K. Erande,et al.  Terahertz technology and its applications , 2013 .

[32]  D. Jena,et al.  Efficient terahertz electro-absorption modulation employing graphene plasmonic structures , 2012, 1211.4176.

[33]  Dirk Englund,et al.  High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. , 2012, Nano letters.

[34]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[35]  Alexandra Boltasseva,et al.  Electrically tunable damping of plasmonic resonances with graphene. , 2012, Nano letters.

[36]  Wangshi Zhao,et al.  Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides , 2012, IEEE Photonics Journal.

[37]  Xiang Zhang,et al.  Switching terahertz waves with gate-controlled active graphene metamaterials. , 2012, Nature materials.

[38]  Xiang Zhang,et al.  Double-layer graphene optical modulator. , 2012, Nano letters.

[39]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[40]  Carl W. Magnuson,et al.  Transfer of CVD-grown monolayer graphene onto arbitrary substrates. , 2011, ACS nano.

[41]  T. Nagatsuma,et al.  Present and Future of Terahertz Communications , 2011, IEEE Transactions on Terahertz Science and Technology.

[42]  David Shrekenhamer,et al.  High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. , 2011, Optics express.

[43]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[44]  Robert Magnusson,et al.  Tunable guided-mode resonances in coupled gratings. , 2009, Optics express.

[45]  L. Falkovsky,et al.  Optical properties of graphene , 2008, 0806.3663.

[46]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[47]  R. E. Miles,et al.  Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties , 2007 .

[48]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[49]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[50]  G. Hanson Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene , 2007, cond-mat/0701205.

[51]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[52]  Kirk A. Fuller,et al.  Coupled-Resonator-Induced Transparency , 2004 .

[53]  M. Koch,et al.  Room-temperature operation of an electrically driven terahertz modulator , 2004 .

[54]  Subhasis Chaudhuri,et al.  Current State of Art , 2019, Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks.