Random graph states, maximal flow and Fuss–Catalan distributions

For any graph consisting of k vertices and m edges we construct an ensemble of random pure quantum states which describe a system composed of 2m subsystems. Each edge of the graph represents a bipartite, maximally entangled state. Each vertex represents a random unitary matrix generated according to the Haar measure, which describes the coupling between subsystems. Dividing all subsystems into two parts, one may study entanglement with respect to this partition. A general technique to derive an expression for the average entanglement entropy of random pure states associated with a given graph is presented. Our technique relies on Weingarten calculus and flow problems. We analyze the statistical properties of spectra of such random density matrices and show for which cases they are described by the free Poissonian (Marchenko–Pastur) distribution. We derive a discrete family of generalized, Fuss–Catalan distributions and explicitly construct graphs which lead to ensembles of random states characterized by these novel distributions of eigenvalues.

[1]  Teodor Banica,et al.  Free Bessel Laws , 2007, Canadian Journal of Mathematics.

[2]  Z. Burda,et al.  Spectrum of the product of independent random Gaussian matrices. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Michal Horodecki,et al.  On Hastings' Counterexamples to the Minimum Output Entropy Additivity Conjecture , 2009, Open Syst. Inf. Dyn..

[4]  P. Horodecki,et al.  Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network , 2009, 0906.1305.

[5]  Ion Nechita,et al.  Random Quantum Channels I: Graphical Calculus and the Bell State Phenomenon , 2009, 0905.2313.

[6]  Structural change in multipartite entanglement sharing: A random matrix approach , 2009, 1001.0705.

[7]  Ion Nechita,et al.  Gaussianization and eigenvalue statistics for random quantum channels (III) , 2009 .

[8]  G. Refael,et al.  Criticality and entanglement in random quantum systems , 2009, 0908.1986.

[9]  H. Sommers,et al.  Entangled black holes as ciphers of hidden information , 2009, 0907.0739.

[10]  J. I. Latorre,et al.  A short review on entanglement in quantum spin systems , 2009, 0906.1499.

[11]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[12]  G. Parisi,et al.  Statistical mechanics of multipartite entanglement , 2008, 0803.4498.

[13]  T. Wettig,et al.  Possible large-N transitions for complex Wilson loop matrices , 2008, 0810.1058.

[14]  F. Benaych-Georges,et al.  On a surprising relation between the Marchenko-Pastur law, rectangular and square free convolutions , 2008, 0808.3938.

[15]  Giorgio Parisi,et al.  Maximally multipartite entangled states , 2007, 0710.2868.

[16]  Gerard J. Milburn,et al.  Geometry of quantum states: an introduction to quantum entanglement by Ingemar Bengtsson and Karol Zyczkowski , 2006, Quantum Inf. Comput..

[17]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[18]  Ion Nechita Asymptotics of Random Density Matrices , 2007 .

[19]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[20]  Drew Armstrong,et al.  Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups , 2006, math/0611106.

[21]  Alexandru Nica,et al.  Lectures on the Combinatorics of Free Probability , 2006 .

[22]  F. Verstraete,et al.  Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.

[23]  U. Smilansky,et al.  Quantum graphs: Applications to quantum chaos and universal spectral statistics , 2006, nlin/0605028.

[24]  B. Coecke Kindergarten Quantum Mechanics: Lecture Notes , 2006 .

[25]  F. Verstraete,et al.  Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.

[26]  A. Winter,et al.  Aspects of Generic Entanglement , 2004, quant-ph/0407049.

[27]  B. Collins,et al.  Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group , 2004, math-ph/0402073.

[28]  J. Bouchaud,et al.  Large dimension forecasting models and random singular value spectra , 2005, physics/0512090.

[29]  Andreas Buchleitner,et al.  Erratum to “Measures and dynamics of entangled states” [Phys. Rep. 415 (2005) 207–259] , 2005 .

[30]  A. Buchleitner,et al.  Measures and dynamics of entangled states , 2005, quant-ph/0505162.

[31]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[32]  H. Sommers,et al.  Statistical properties of random density matrices , 2004, quant-ph/0405031.

[33]  A. J. Scott Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions , 2003, quant-ph/0310137.

[34]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[35]  G. Vidal,et al.  Ground state entanglement in quantum spin chains , 2003, Quantum Inf. Comput..

[36]  Uniwersytet Jagiello Statistical properties of random density matrices , 2004 .

[37]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[38]  J. Jurkiewicz,et al.  Infinite products of large random matrices and matrix-valued diffusion , 2003, math-ph/0304032.

[39]  B. Collins Moments and cumulants of polynomial random variables on unitarygroups, the Itzykson-Zuber integral, and free probability , 2002, math-ph/0205010.

[40]  W. Munro,et al.  Bounds on entanglement in qudit subsystems , 2002, quant-ph/0203037.

[41]  K. Penson,et al.  Coherent States from Combinatorial Sequences , 2001, quant-ph/0111151.

[42]  H. Sommers,et al.  Induced measures in the space of mixed quantum states , 2000, quant-ph/0012101.

[43]  S. Braunstein GEOMETRY OF QUANTUM INFERENCE , 1996 .

[44]  R. Speicher,et al.  Convolution and limit theorems for conditionally free random variables , 1994, funct-an/9410004.

[45]  Kanno,et al.  Proof of Page's conjecture on the average entropy of a subsystem. , 1994, Physical review letters.

[46]  Page,et al.  Information in black hole radiation. , 1993, Physical review letters.

[47]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[48]  Angelo Vulpiani,et al.  Products of Random Matrices , 1993 .

[49]  A. Crisanti,et al.  Products of random matrices in statistical physics , 1993 .

[50]  P A Mello Averages on the unitary group and applications to the problem of disordered conductors , 1990 .

[51]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .