Advanced scanning probe lithography.

The nanoscale control afforded by scanning probe microscopes has prompted the development of a wide variety of scanning-probe-based patterning methods. Some of these methods have demonstrated a high degree of robustness and patterning capabilities that are unmatched by other lithographic techniques. However, the limited throughput of scanning probe lithography has prevented its exploitation in technological applications. Here, we review the fundamentals of scanning probe lithography and its use in materials science and nanotechnology. We focus on robust methods, such as those based on thermal effects, chemical reactions and voltage-induced processes, that demonstrate a potential for applications.

[1]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[2]  Michael T. Postek,et al.  Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air , 1990 .

[3]  P. Avouris,et al.  Field-Induced Nanometer- to Atomic-Scale Manipulation of Silicon Surfaces with the STM , 1991, Science.

[4]  D. Rugar,et al.  Thermomechanical writing with an atomic force microscope tip , 1992 .

[5]  C. Tien Annual Review of Heat Transfer , 1993 .

[6]  John R. Tucker,et al.  Nanoscale patterning and oxidation of H‐passivated Si(100)‐2×1 surfaces with an ultrahigh vacuum scanning tunneling microscope , 1994 .

[7]  E. S. Snow,et al.  AFM Fabrication of Sub-10-Nanometer Metal-Oxide Devices with in Situ Control of Electrical Properties , 1995, Science.

[8]  C. Quate,et al.  Centimeter scale atomic force microscope imaging and lithography , 1998 .

[9]  Calvin F. Quate,et al.  Scanning Probe Lithography , 1999 .

[10]  D. Tennant,et al.  Limits of Conventional Lithography , 1999 .

[11]  Sidney R. Cohen,et al.  Nanoelectrochemical Patterning of Monolayer Surfaces: Toward Spatially Defined Self-Assembly of Nanostructures , 1999 .

[12]  Kazuhiko Matsumoto,et al.  Room-temperature single-electron memory made by pulse-mode atomic force microscopy nano oxidation process on atomically flat α-alumina substrate , 2000 .

[13]  B. Maynor,et al.  Electrochemical AFM "dip-pen" nanolithography. , 2001, Journal of the American Chemical Society.

[14]  T. Ihn,et al.  Energy spectra of quantum rings , 2001, Nature.

[15]  Ricardo Garcia,et al.  Size determination of field-induced water menisci in noncontact atomic force microscopy , 2002 .

[16]  Electrochemical AFM “Dip-Pen” Nanolithography and More , 2002 .

[17]  Erol Sancaktar,et al.  Electrostatic nanolithography in polymers using atomic force microscopy , 2003, Nature materials.

[18]  Levi A. Gheber,et al.  Protein printing with an atomic force sensing nanofountainpen , 2003 .

[19]  Bernd Gotsmann,et al.  Exploiting Chemical Switching in a Diels–Alder Polymer for Nanoscale Probe Lithography and Data Storage , 2006 .

[20]  Ricardo Garcia,et al.  Nano-chemistry and scanning probe nanolithographies. , 2006, Chemical Society reviews.

[21]  Yasuo Cho,et al.  Nanodomain manipulation for ultrahigh density ferroelectric data storage , 2006, Nanotechnology.

[22]  M. Hersam,et al.  Kinetics and Mechanism of Atomic Force Microscope Local Oxidation on Hydrogen‐Passivated Silicon in Inert Organic Solvents , 2006 .

[23]  Chad A Mirkin,et al.  The power of the pen: development of massively parallel dip-pen nanolithography. , 2007, ACS nano.

[24]  M. Horton,et al.  A Multiprotein Microarray on Silicon Dioxide Fabricated by Using Electric‐Droplet Lithography , 2007 .

[25]  Takashi Okada,et al.  High-speed, sub-15 nm feature size thermochemical nanolithography. , 2007, Nano letters.

[26]  R. V. Martinez,et al.  Nanoscale Deposition of Single‐Molecule Magnets onto SiO2 Patterns , 2007 .

[27]  A. Zettl,et al.  High‐Field Scanning Probe Lithography in Hexadecane: Transitioning from Field Induced Oxidation to Solvent Decomposition through Surface Modification , 2007 .

[28]  Masayuki Abe,et al.  Chemical identification of individual surface atoms by atomic force microscopy , 2007, Nature.

[29]  R. V. Martinez,et al.  Patterning polymeric structures with 2 nm resolution at 3 nm half pitch in ambient conditions. , 2007, Nano letters.

[30]  C. Mirkin,et al.  Applications of dip-pen nanolithography. , 2007, Nature nanotechnology.

[31]  Bing-Wei Mao,et al.  The creation of nanostructures on an Au111 electrode by tip-induced iron deposition from an ionic liquid. , 2008, Small.

[32]  J. Garno,et al.  AFM-based lithography for nanoscale protein assays. , 2008, Analytical chemistry.

[33]  William Paul King,et al.  The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography , 2008 .

[34]  H. Schönherr,et al.  Atomic force microscopy based thermal lithography of poly(tert-butyl acrylate) block copolymer films for bioconjugation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[35]  Leonid P. Rokhinson,et al.  Atomic force microscope local oxidation nanolithography of graphene , 2008, 0807.2886.

[36]  Jiwon Han,et al.  Self-Assembly Guided One-Dimensional Arrangement of Gold Nanoparticles: A Facile Approach , 2008 .

[37]  Ricardo Garcia,et al.  Molecular mechanism of water bridge buildup: field-induced formation of nanoscale menisci. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[38]  R. Maoz,et al.  Contact electrochemical replication of hydrophilic-hydrophobic monolayer patterns. , 2008, ACS nano.

[39]  Theodore Antonakopoulos,et al.  Probe-based ultrahigh-density storage technology , 2008, IBM J. Res. Dev..

[40]  J. Martín-Sánchez,et al.  Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography , 2009, Nanotechnology.

[41]  Yong P. Chen,et al.  AFM local oxidation nanolithography of graphene , 2009 .

[42]  Franco Cacialli,et al.  Thermochemical nanopatterning of organic semiconductors. , 2009, Nature nanotechnology.

[43]  Tomaso Zambelli,et al.  FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. , 2009, Nano letters.

[44]  William D. Underwood,et al.  Direct writing and characterization of poly(p-phenylene vinylene) nanostructures , 2009 .

[45]  M. Forrester,et al.  Charge-based scanning probe readback of nanometer-scale ferroelectric domain patterns at megahertz rates , 2009, Nanotechnology.

[46]  Glen P Miller,et al.  Field-assisted nanopatterning of metals, metal oxides and metal salts , 2009, Nanotechnology.

[47]  Seizo Morita,et al.  Atomic force microscopy as a tool for atom manipulation. , 2009, Nature nanotechnology.

[48]  Seth R. Marder,et al.  Thermochemical Nanolithography of Multifunctional Nanotemplates for Assembling Nano‐Objects , 2009 .

[49]  G. Vancso,et al.  pH Responsive Polymeric Brush Nanostructures: Preparation and Characterization by Scanning Probe Oxidation and Surface Initiated Polymerization. , 2009, Macromolecular rapid communications.

[50]  P. Weiss,et al.  Hybrid strategies in nanolithography , 2010 .

[51]  Philippe Dubois,et al.  Probe‐Based 3‐D Nanolithography Using Self‐Amplified Depolymerization Polymers , 2010, Advanced materials.

[52]  Daniel Maspoch,et al.  Controlling the Number of Proteins with Dip‐Pen Nanolithography , 2010, Advanced materials.

[53]  P. Vettiger,et al.  Parallel optical readout of cantilever arrays in dynamic mode , 2009, Nanotechnology.

[54]  Andreas Scholl,et al.  Scanning Probe Direct‐Write of Germanium Nanostructures , 2010, Advanced materials.

[55]  Seth R. Marder,et al.  Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics , 2010, Science.

[56]  Quan Tran,et al.  An ultraclean tip-wear reduction scheme for ultrahigh density scanning probe-based data storage. , 2010, ACS nano.

[57]  C. Innocenti,et al.  Additive nanoscale embedding of functional nanoparticles on silicon surface. , 2010, Nanoscale.

[58]  Hsin-yu Lin,et al.  Localized Surface Plasmon Resonance in Lithographically Fabricated Single Gold Nanowires , 2010 .

[59]  R. V. Martinez,et al.  Large‐scale Nanopatterning of Single Proteins used as Carriers of Magnetic Nanoparticles , 2010, Advanced materials.

[60]  Francesco Zerbetto,et al.  Nanopatterning of carbonaceous structures by field-induced carbon dioxide splitting with a force microscope , 2010 .

[61]  A. Knoll,et al.  Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes , 2010, Science.

[62]  R. V. Martinez,et al.  Silicon nanowire circuits fabricated by AFM oxidation nanolithography , 2010, Nanotechnology.

[63]  K. Novoselov,et al.  From one electron to one hole: quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching. , 2010, Small.

[64]  M. Notomi,et al.  Ultrahigh-Q nanocavities written with a nanoprobe. , 2011, Nano letters.

[65]  A. Tseng Removing material using atomic force microscopy with single- and multiple-tip sources. , 2011, Small.

[66]  B. Park,et al.  Nanoscale lithography on monolayer graphene using hydrogenation and oxidation. , 2011, ACS nano.

[67]  Vamsi Talla,et al.  Serial and parallel Si, Ge, and SiGe direct-write with scanning probes and conducting stamps. , 2011, Nano letters.

[68]  K. Berggren,et al.  Electron-beam-induced deposition of 3-nm-half-pitch patterns on bulk Si , 2011 .

[69]  Ute Drechsler,et al.  High density multi-level recording for archival data preservation , 2011 .

[70]  Jurriaan Huskens,et al.  Polymers in conventional and alternative lithography for the fabrication of nanostructures , 2011 .

[71]  J. Robinson,et al.  Chemically isolated graphene nanoribbons reversibly formed in fluorographene using polymer nanowire masks. , 2011, Nano letters.

[72]  R. Maoz,et al.  A bipolar electrochemical approach to constructive lithography: metal/monolayer patterns via consecutive site-defined oxidation and reduction. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[73]  A. Chilkoti,et al.  Field-induced nanolithography for patterning of non-fouling polymer brush surfaces. , 2011, Small.

[74]  Michel Despont,et al.  Rapid turnaround scanning probe nanolithography , 2011, Nanotechnology.

[75]  Nazanin Bassiri-Gharb,et al.  Direct Fabrication of Arbitrary‐Shaped Ferroelectric Nanostructures on Plastic, Glass, and Silicon Substrates , 2011, Advanced materials.

[76]  Satoru Masubuchi,et al.  Atomic force microscopy based tunable local anodic oxidation of graphene. , 2011, Nano letters.

[77]  Felix Holzner,et al.  Directed placement of gold nanorods using a removable template for guided assembly. , 2011, Nano letters.

[78]  H. Ryu,et al.  Ohm’s Law Survives to the Atomic Scale , 2012, Science.

[79]  L. Skinner,et al.  Structure of the floating water bridge and water in an electric field , 2012, Proceedings of the National Academy of Sciences.

[80]  B. Weber,et al.  Engineering independent electrostatic control of atomic-scale (∼4 nm) silicon double quantum dots. , 2012, Nano letters.

[81]  B. Fabre,et al.  Automated sub-100 nm local anodic oxidation (LAO)-directed nanopatterning of organic monolayer-modified silicon surfaces , 2012 .

[82]  Farhad Larki,et al.  Pinch-off mechanism in double-lateral-gate junctionless transistors fabricated by scanning probe microscope based lithography , 2012, Beilstein journal of nanotechnology.

[83]  A. Knoll,et al.  Field stitching in thermal probe lithography by means of surface roughness correlation , 2012, Nanotechnology.

[84]  R. Maoz,et al.  Parallel- and serial-contact electrochemical metallization of monolayer nanopatterns: A versatile synthetic tool en route to bottom-up assembly of electric nanocircuits , 2012, Beilstein journal of nanotechnology.

[85]  T. Schimmel,et al.  Reversible mechano-electrochemical writing of metallic nanostructures with the tip of an atomic force microscope , 2012, Beilstein journal of nanotechnology.

[86]  M. Murgia,et al.  Regenerable Resistive Switching in Silicon Oxide Based Nanojunctions , 2012, Advanced materials.

[87]  R. Szoszkiewicz,et al.  Local thermomechanical analysis of a microphase-separated thin lamellar PS-b-PEO film. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[88]  Ivo W. Rangelow,et al.  Scanning probe nanolithography on calixarene , 2012 .

[89]  M. Y. Simmons,et al.  A single atom transistor , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[90]  J. Plaza,et al.  Nanopatterning of Anionic Nanoparticles based on Magnetic Prussian‐Blue Analogues , 2012 .

[91]  Bernard Pannetier,et al.  Quantum and thermal phase slips in superconducting niobium nitride (NbN) ultrathin crystalline nanowire: application to single photon detection. , 2012, Nano letters.

[92]  Robert J. Chen,et al.  Tuning the built-in electric field in ferroelectric Pb(Zr(0.2)Ti(0.8))O3 films for long-term stability of single-digit nanometer inverted domains. , 2012, Nano letters.

[93]  Ricardo Garcia,et al.  Detection of the early stage of recombinational DNA repair by silicon nanowire transistors. , 2012, Nano letters.

[94]  D. Meroni,et al.  Probe‐Based Electro‐Oxidative Lithography of OTS SAMs Deposited onto Transparent ITO Substrates , 2012 .

[95]  Nicolas de Rooij,et al.  Conductivity of SU‐8 Thin Films through Atomic Force Microscopy Nano‐Patterning , 2012 .

[96]  C. Jin,et al.  Graphene annealing: how clean can it be? , 2012, Nano letters.

[97]  Jinlong Yang,et al.  Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography , 2012, Nature Communications.

[98]  K. A. Brown,et al.  Plow and ridge nanofabrication. , 2013, Small.

[99]  Michel Despont,et al.  Thermal probe nanolithography: in-situ inspection, high-speed, high-resolution, 3D , 2013, Other Conferences.

[100]  Chad A. Mirkin,et al.  Desktop Nanofabrication with Massively Multiplexed Beam Pen Lithography , 2013, Nature Communications.

[101]  Amit Kumar,et al.  Toward quantitative electrochemical measurements on the nanoscale by scanning probe microscopy: environmental and current spreading effects. , 2013, ACS nano.

[102]  Shy-Jay Lin,et al.  Reflective electron beam lithography: lithography results using CMOS controlled digital pattern generator chip , 2013, Advanced Lithography.

[103]  Hyunjung Shin,et al.  Effects of ion beam-irradiated Si on atomic force microscope local oxidation , 2013 .

[104]  G. de Boer,et al.  MAPPER: progress toward a high-volume manufacturing system , 2013, Advanced Lithography.

[105]  K. M. Carroll,et al.  Fabricating nanoscale chemical gradients with ThermoChemical NanoLithography. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[106]  H. Schmidt,et al.  Mixing of edge states at a bipolar graphene junction , 2012, 1212.2824.

[107]  Chad A Mirkin,et al.  Large-area molecular patterning with polymer pen lithography , 2013, Nature Protocols.

[108]  B. Bhatia,et al.  HEATED ATOMIC FORCE MICROSCOPE CANTILEVERS AND THEIR APPLICATIONS , 2013 .

[109]  Marcus Kaestner,et al.  Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography , 2013 .

[110]  Ricardo Garcia,et al.  Electrical characteristics of silicon nanowire transistors fabricated by scanning probe and electron beam lithographies , 2013, Nanotechnology.

[111]  T. Ihn,et al.  Origins of conductance anomalies in a p-type GaAs quantum point contact , 2013, 1301.3995.

[112]  P. Stavrinou,et al.  On‐Demand Patterning of Nanostructured Pentacene Transistors by Scanning Thermal Lithography , 2013, Advanced materials.

[113]  M. Buitelaar,et al.  Transport spectroscopy of a graphene quantum dot fabricated by atomic force microscope nanolithography , 2013, 1311.7652.

[114]  Matteo Lorenzoni,et al.  Scanning probe oxidation of SiC, fabrication possibilities and kinetics considerations , 2013 .

[115]  Toshio Ando,et al.  High-speed AFM and applications to biomolecular systems. , 2013, Annual review of biophysics.

[116]  Albert L. Lipson,et al.  Conductive scanning probe characterization and nanopatterning of electronic and energy materials , 2013 .

[117]  U. Schubert,et al.  Hierarchical, guided self-assembly of preselected carbon nanotubes for the controlled fabrication of CNT structures by electrooxidative nanolithography. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[118]  Chu-Shou Yang,et al.  Rapid synthesis of gallium oxide resistive random access memory by atomic force microscopy local anodic oxidation , 2013 .

[119]  J. Robinson,et al.  Nanoscale reduction of graphene fluoride via thermochemical nanolithography. , 2013, ACS nano.

[120]  Francesc Pérez-Murano,et al.  Polystyrene as a brush layer for directed self-assembly of block co-polymers , 2013 .

[121]  R. Haug,et al.  Spin-dependent shot noise enhancement in a quantum dot , 2013, 1307.8165.

[122]  A. Knoll,et al.  Thermal probe maskless lithography for 27.5 nm half-pitch Si technology. , 2013, Nano letters.

[123]  R. Reifenberger,et al.  Nanocarbon-scanning probe microscopy synergy: fundamental aspects to nanoscale devices. , 2014, ACS applied materials & interfaces.

[124]  Philip D. Rack,et al.  Focused helium and neon ion beam induced etching for advanced extreme ultraviolet lithography mask repair , 2014 .

[125]  Sergei V. Kalinin,et al.  Water-mediated electrochemical nano-writing on thin ceria films , 2014, Nanotechnology.

[126]  K. M. Carroll,et al.  Parallelization of thermochemical nanolithography. , 2014, Nanoscale.

[127]  I. Rangelow,et al.  Review of scanning probe micromachining and its applications within nanoscience , 2014 .

[128]  J. Rogers,et al.  Nanometer Scale Alignment of Block‐Copolymer Domains by Means of a Scanning Probe Tip , 2014, Advanced materials.

[129]  Ricardo Garcia,et al.  Fast nanomechanical spectroscopy of soft matter , 2014, Nature Communications.