Thermal and mechanical behavior of ZrTiO4-TiO2 porous ceramics by direct foaming

[1]  I. Kim,et al.  ZrTiO4 porous ceramics fabricated from particle-stabilized wet foam by direct foaming , 2016 .

[2]  I. Kim,et al.  ZrO 2 –TiO 2 porous ceramics from particle stabilized wet foam by colloidal processing , 2016 .

[3]  S. Kim,et al.  Wet foam stability and tailoring microstructure of porous ceramics using polymer beads , 2015 .

[4]  Sangram Mazumder,et al.  Effect of amphiphile chain length on wet foam stability of porous ceramics , 2015 .

[5]  C. Baudín,et al.  Fracture strength and fracture toughness of zirconium titanate–zirconia bulk composite materials , 2015 .

[6]  G. Mežinskis,et al.  Synthesis of Nanoporous SiO2-TiO2-ZrO2 Ceramics Using Sol-Gel Technology , 2014 .

[7]  C. Baudín,et al.  Elastic behaviour of zirconium titanate-zirconia bulk composite materials at room and high temperature , 2013 .

[8]  C. Baudín,et al.  Elastic behaviour of zirconium titanate bulk material at room and high temperature , 2012 .

[9]  L. León-Reina,et al.  Reaction sintered zirconium titanate–zirconia bulk materials from 3Y2O3-stabilized zirconia and TiO2. Phase composition and their potential for thermal shock applications , 2012 .

[10]  K. Danov,et al.  The standard free energy of surfactant adsorption at air/water and oil/water interfaces: Theoretical vs. empirical approaches , 2012, Colloid Journal.

[11]  Byong-Taek Lee,et al.  Formation of TiO2 nano fibers on a micro-channeled Al2O3–ZrO2/TiO2 porous composite membrane for photocatalytic filtration , 2012 .

[12]  L. León-Reina,et al.  Structural characterization of bulk ZrTiO4 and its potential for thermal shock applications , 2012 .

[13]  D. Weitz,et al.  Hierarchical porous materials made by drying complex suspensions. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[14]  C. Baudín,et al.  Phase evolution in reaction sintered zirconium titanate based materials , 2010 .

[15]  M. Zeni,et al.  PREPARATION OF CRYSTALLINE ZrTiO 4 AT LOW THERMAL TREATMENT TEMPERATURES , 2010 .

[16]  D. Su,et al.  Structure and electrical conductivity of porous zirconium titanate ceramics produced by mechanochemical treatment and sintering , 2009 .

[17]  X. Bokhimi,et al.  X-ray diffraction, and Raman scattering study of nanostructured ZrO2-TiO2 oxides prepared by sol-gel. , 2008, Journal of nanoscience and nanotechnology.

[18]  Ilke Akartuna,et al.  Materials from foams and emulsions stabilized by colloidal particles , 2007 .

[19]  Chul B. Park,et al.  Processing of Porous Silicon Oxycarbide Ceramics from Extruded Blends of Polysiloxane and Polymer Microbead , 2007 .

[20]  J. Macan,et al.  Zirconium titanate ceramics for humidity sensors synthesized by sol-gel process , 2007 .

[21]  L. Gauckler,et al.  Macroporous Ceramics from Particle-Stabilized Wet Foams , 2007 .

[22]  L. Gauckler,et al.  Stabilization of foams with inorganic colloidal particles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[23]  André R. Studart,et al.  Processing Routes to Macroporous Ceramics: A Review , 2006 .

[24]  N. Vittayakorn Synthesis and a crystal structural study of microwave dielectric Zirconium Titan- ate (ZrTiO4) powders via a mixed oxide synthesis route , 2006 .

[25]  Y. Sakka,et al.  Fabrication of porous ceramics with controlled pore size by colloidal processing , 2005 .

[26]  B. Lawn,et al.  Model for Cyclic Fatigue of Quasi-Plastic Ceramics in Contact with Spheres , 2004 .

[27]  I. Cosentino,et al.  Development of zirconia-titania porous ceramics for humidity sensors , 2003 .

[28]  G. Cao,et al.  Low thermal expansion behavior and thermal durability of ZrTiO4–Al2TiO5–Fe2O3 ceramics between 750 and 1400 °C , 2002 .

[29]  M. Leoni,et al.  Aqueous synthesis and sintering of zirconium titanate powders for microwave components , 2001 .

[30]  B. Lawn,et al.  Role of microstructure in dynamic fatigue of glass-ceramics after contact with spheres , 2000 .

[31]  Y. J. Park,et al.  Electric Field Effect on Commensurate Phase in ZrTiO$_{4}$ Ceramics , 1998 .