Nine points of light: acquiring subspaces for face recognition under variable lighting

Previous work has demonstrated that the image variations of many objects (human faces in particular) under variable lighting can be effectively modeled by low dimensional linear spaces. Basis images spanning this space are usually obtained in one of two ways: A large number of images of the object under different conditions is acquired, and principal component analysis (PCA) is used to estimate a subspace. Alternatively, a 3D model (perhaps reconstructed from images) is used to render virtual images under either point sources from which a subspace is derived using PCA or more recently under diffuse synthetic lighting based on spherical harmonics. In this paper we show that there exists a configuration of nine point light source directions such that by taking nine images of each individual under these single sources, the resulting subspace is effective at recognition under a wide range of lighting conditions. Since the subspace is generated directly from real images, potentially complex intermediate steps such as PCA and 3D reconstruction can be completely avoided; nor is it necessary to acquire large numbers of training images or physically construct complex diffuse (harmonic) light fields. We provide both theoretical and empirical results to explain why these linear spaces should be good for recognition.

[1]  David J. Kriegman,et al.  From few to many: generative models for recognition under variable pose and illumination , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[2]  Pat Hanrahan,et al.  An efficient representation for irradiance environment maps , 2001, SIGGRAPH.

[3]  David J. Kriegman,et al.  Illumination cones for recognition under variable lighting: faces , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[4]  Ronen Basri,et al.  Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[5]  Shimon Ullman,et al.  Face Recognition: The Problem of Compensating for Changes in Illumination Direction , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  David W. Jacobs,et al.  In search of illumination invariants , 2001, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[7]  Russell A. Epstein,et al.  5/spl plusmn/2 eigenimages suffice: an empirical investigation of low-dimensional lighting models , 1995, Proceedings of the Workshop on Physics-Based Modeling in Computer Vision.

[8]  Peter W. Hallinan A low-dimensional representation of human faces for arbitrary lighting conditions , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[9]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[10]  Pat Hanrahan,et al.  A signal-processing framework for inverse rendering , 2001, SIGGRAPH.

[11]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  David J. Kriegman,et al.  What is the set of images of an object under all possible lighting conditions? , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[14]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[15]  Hiroshi Murase,et al.  Dimensionality of illumination in appearance matching , 1996, Proceedings of IEEE International Conference on Robotics and Automation.