Intragenic amplification and divergence in the mouse α-fetoprotein gene

[1]  L. Jagodzinski,et al.  Fine structure and evolution of the rat serum albumin gene , 1981, Molecular and cellular biology.

[2]  S. Tilghman,et al.  alpha-Fetoprotein and albumin genes are in tandem in the mouse genome. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[3]  E. Ziff,et al.  Promoters and heterogeneous 5' termini of the messenger RNAs of adenovirus serotype 2. , 1981, Journal of molecular biology.

[4]  K. Marcker,et al.  The structure of a chromosomal leghaemoglobin gene from soybean , 1981, Nature.

[5]  L. Jagodzinski,et al.  Sequence homology between RNAs encoding rat alpha-fetoprotein and rat serum albumin. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Simon W. Law,et al.  Homology between the primary structure of α-fetoprotein, deduced from a complete cDNA sequence, and serum albumin , 1981, Nature.

[7]  M. Go Correlation of DNA exonic regions with protein structural units in haemoglobin , 1981, Nature.

[8]  C. Craik,et al.  O2 binding properties of the product of the central exon of β-globin gene , 1981, Nature.

[9]  P. D’Eustachio,et al.  Murineα-fetoprotein and albumin: Two evolutionarily linked proteins encoded on the same mouse chromosome , 1981, Somatic cell genetics.

[10]  A. Place,et al.  Alcohol dehydrogenase gene of Drosophila melanogaster: relationship of intervening sequences to functional domains in the protein. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[11]  T. Shenk,et al.  The sequence 5′-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs , 1981, Cell.

[12]  Wilfried W. de Jong,et al.  Causes of more frequent deletions than insertions in mutations and protein evolution , 1981, Nature.

[13]  M. Gorin,et al.  The evolution of alpha-fetoprotein and albumin. I. A comparison of the primary amino acid sequences of mammalian alpha-fetoprotein and albumin. , 1981, The Journal of biological chemistry.

[14]  D. Kioussis,et al.  The evolution of alpha-fetoprotein and albumin. II. The structures of the alpha-fetoprotein and albumin genes in the mouse. , 1981, The Journal of biological chemistry.

[15]  I. Pastan,et al.  The collagen gene: Evidence for its evolutionary assembly by amplification of a DNA segment containing an exon of 54 bp , 1980, Cell.

[16]  M. Innis,et al.  alpha-Fetoprotein gene expression. Partial DNA sequence and COOH-terminal homology to albumin. , 1980, The Journal of biological chemistry.

[17]  Tom Maniatis,et al.  The structure and evolution of the human β-globin gene family , 1980, Cell.

[18]  A. E. Sippel,et al.  Exons encode functional and structural units of chicken lysozyme. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Means,et al.  Ovomucoid intervening sequences specify functional domains and generate protein polymorphism , 1980, Cell.

[20]  J. Taylor,et al.  Amino acid sequence homology between rat alpha-fetoprotein and albumin at the COOH-terminal regions. , 1980, The Journal of biological chemistry.

[21]  P. Leder,et al.  Unusual alpha-globin-like gene that has cleanly lost both globin intervening sequences. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[22]  L. Hood,et al.  Mouse Cμ heavy chain immunoglobulin gene segment contains three intervening sequences separating domains , 1980, Nature.

[23]  C. Craik,et al.  Characterization of globin domains: heme binding to the central exon product. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Gorin,et al.  Structure of the alpha-fetoprotein gene in the mouse. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[25]  T. Maniatis,et al.  Eucaryotic Gene Regulation , 1980 .

[26]  Stephen M. Mount,et al.  Are snRNPs involved in splicing? , 1980, Nature.

[27]  T. Honjo,et al.  Cloning and complete nucleotide sequence of mouse immunoglobulin γ1 chain gene , 1979, Cell.

[28]  N. Rosenthal,et al.  The structure and evolution of the two nonallelic rat preproinsulin genes , 1979, Cell.

[29]  L. Hood,et al.  Immunoglobulin heavy chain gene organization in mice: analysis of a myeloma genomic clone containing variable and alpha constant regions. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Tonegawa,et al.  Domains and the hinge region of an immunoglobulin heavy chain are encoded in separate DNA segments , 1979, Nature.

[31]  J. Darnell Implications of RNA-RNA splicing in evolution of eukaryotic cells. , 1978, Science.

[32]  K. J. Dorrington The structural basis for the functional versatility of immunoglobulin G1. , 1978, Canadian journal of biochemistry.

[33]  C Benoist,et al.  Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Seidman,et al.  A comparison of two cloned mouse β-globin genes and their surrounding and intervening sequences , 1978, Cell.

[35]  R. Staden Further procedures for sequence analysis by computer. , 1978, Nucleic acids research.

[36]  W. Gilbert Why genes in pieces? , 1978, Nature.

[37]  R. Staden Sequence data handling by computer. , 1977, Nucleic acids research.

[38]  P. Sharp,et al.  Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids , 1977, Cell.

[39]  J. Walker,et al.  Evolution of serum albumin. , 1977, Journal of molecular biology.

[40]  W. Gilbert,et al.  A new method for sequencing DNA. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[41]  N. Proudfoot,et al.  3′ Non-coding region sequences in eukaryotic messenger RNA , 1976, Nature.

[42]  J. Bonner,et al.  Nucleotide sequence of cloned rat serum albumin messenger RNA. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Treisman,et al.  Transcription maps of polyoma virus-specific RNA: analysis by two-dimensional nuclease S1 gel mapping. , 1980, Methods in enzymology.

[44]  L. J. Korn,et al.  [60] Computer analysis of nucleic acids and proteins , 1980 .

[45]  D. Kemp,et al.  Intervening sequences divide the gene for the constant region of mouse immunoglobulin mu chains into segments, each encoding a domain. , 1980, Proceedings of the National Academy of Sciences of the United States of America.