Topological phonons and thermoelectricity in triple-point metals

Recently published discoveries of acoustic- and optical-mode inversion in the phonon spectrum of certain metals became the first realistic example of noninteracting topological bosonic excitations in existing materials. However, the observable physical and technological use of such topological phonon phases remained unclear. In this paper, we provide strong theoretical and numerical evidence that for a class of metallic compounds (known as triple-point topological metals), the points in the phonon spectrum, at which three (two optical and one acoustic) phonon modes (bands) cross, represent a well-defined topological material phase, in which the hosting metals have very strong thermoelectric response. The triple-point bosonic collective excitations appearing due to these topological phonon band-crossing points significantly suppress the lattice thermal conductivity, making such metals phonon glasslike. At the same time, the topological triple-point and Weyl fermionic quasiparticle excitations present in these metals yield good electrical transport (electron crystal) and cause a local enhancement in the electronic density of states near the Fermi level, which considerably improves the thermopower. This combination of phonon glass and electron crystal is the key for high thermoelectric performance in metals. We call these materials topological thermoelectric metals and propose several compounds for this phase (TaSb and TaBi). We hope that this work will lead researchers in physics and materials science to the detailed study of topological phonon phases in electronic materials, and the possibility of these phases to introduce more efficient use of thermoelectric materials in many everyday technological applications.

[1]  Liang Fu,et al.  Weyl points and line nodes in gyroid photonic crystals , 2012, Nature Photonics.

[2]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[3]  S. Sarma,et al.  Topological semimetal in a fermionic optical lattice , 2010, Nature Physics.

[4]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Xiaojuan Liu,et al.  Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles , 2007 .

[6]  A. Romero,et al.  The elastic, mechanical and thermodynamic properties of Bi-Sb binaries: Effect of spin-orbit coupling , 2017, 1712.00293.

[7]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[8]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[9]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[10]  M. Troyer,et al.  Z2Pack: Numerical Implementation of Hybrid Wannier Centers for Identifying Topological Materials , 2016, 1610.08983.

[11]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[12]  S. Huber,et al.  Classification of topological phonons in linear mechanical metamaterials , 2016, Proceedings of the National Academy of Sciences.

[13]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[14]  Qianhua Xu,et al.  Observation of three-component fermions in the topological semimetal molybdenum phosphide , 2017, Nature.

[15]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[16]  Gennady Shvets,et al.  Photonic topological insulators. , 2012, Nature materials.

[17]  D. Raabe,et al.  Design of Mg alloys: The effects of Li concentration on the structure and elastic properties in the Mg–Li binary system by first principles calculations , 2017 .

[18]  F. D. M. Haldane,et al.  Analogs of quantum-Hall-effect edge states in photonic crystals , 2008 .

[19]  G. F. Chen,et al.  Experimental discovery of Weyl semimetal TaAs , 2015 .

[20]  M. Soljačić,et al.  Experimental observation of Weyl points , 2015, Science.

[21]  Aldo H. Romero,et al.  Prediction and control of spin polarization in a Weyl semimetallic phase of BiSb , 2016 .

[22]  David-Wei Zhang,et al.  High thermoelectric performance of Weyl semimetal TaAs , 2016 .

[23]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[24]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[25]  Topological nanophononic states by band inversion , 2018, 1802.08870.

[26]  C. Felser,et al.  Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. , 2016, Nature materials.

[27]  C. Kane,et al.  Topological Phonons and Weyl Lines in Three Dimensions. , 2016, Physical review letters.

[28]  J. J. Murray,et al.  Phase relationships and thermodynamics of refractory metal pnictides: The metal-rich tantalum arsenides , 1976 .

[29]  C. Kane,et al.  Spin texture on the Fermi surface of tensile-strained HgTe , 2012, 1206.0684.

[30]  Jorge O. Sofo,et al.  Transport coefficients from first-principles calculations , 2003 .

[31]  Gennady Shvets,et al.  Photonic topological insulators. , 2013, Nature materials.

[32]  E. Gross,et al.  Thermal conductivity in PbTe from first principles , 2014, 1402.5535.

[33]  M. Zebarjadi,et al.  Semi-metals as potential thermoelectric materials , 2018, Scientific Reports.

[34]  M. I. Aroyo,et al.  Topological quantum chemistry , 2017, Nature.

[35]  Guillermo Avendaño-Franco,et al.  Investigation of novel crystal structures of Bi-Sb binaries predicted using the minima hopping method. , 2016, Physical chemistry chemical physics : PCCP.

[36]  S. I. Simak,et al.  Lattice dynamics of anharmonic solids from first principles , 2011, 1103.5590.

[37]  David J. Singh,et al.  Coexistence of Weyl physics and planar defects in the semimetals TaP and TaAs , 2016, 1606.05178.

[38]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[39]  P. Nielsen,et al.  Theory of thermoelectric effects in metals and alloys , 1974 .

[40]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[41]  Quansheng Wu,et al.  Triple Point Topological Metals , 2016, 1605.04653.

[42]  Topological Photonics , 2014, 1408.6730.

[43]  Ling Lu,et al.  Double-Weyl Phonons in Transition-Metal Monosilicides. , 2017, Physical review letters.

[44]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[45]  S. Goedecker Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.

[46]  G. Mahan,et al.  Thermoelectric properties of Sb 2 Te 3 under pressure and uniaxial stress , 2003 .

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[48]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[49]  S. Huber,et al.  Observation of phononic helical edge states in a mechanical topological insulator , 2015, Science.

[50]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[51]  Alexander Szameit,et al.  Topological creation and destruction of edge states in photonic graphene , 2012, CLEO: 2013.

[52]  C. Kane,et al.  Topological boundary modes in isostatic lattices , 2013, Nature Physics.

[53]  Stefan Goedecker,et al.  Crystal structure prediction using the minima hopping method. , 2010, The Journal of chemical physics.

[54]  Igor A. Abrikosov,et al.  Temperature dependent effective potential method for accurate free energy calculations of solids , 2013, 1303.1145.

[55]  C. Chan,et al.  First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals , 2012 .

[56]  The Emergence of Dirac points in Photonic Crystals with Mirror Symmetry , 2014, Scientific reports.

[57]  X. Dai,et al.  Coexistence of Weyl fermion and massless triply degenerate nodal points , 2016, 1605.05186.

[58]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[59]  T. Okuda,et al.  Large thermoelectric response of metallic perovskites: Sr 1 − x La x TiO 3 ( 0 x 0 . 1 ) , 2001 .

[60]  Barry Bradlyn,et al.  Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.

[61]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[62]  David J. Singh Doping-dependent thermopower of PbTe from Boltzmann transport calculations , 2010 .

[63]  Stefan Goedecker,et al.  Efficient moves for global geometry optimization methods and their application to binary systems. , 2010, The Journal of chemical physics.

[64]  Su-Yang Xu,et al.  Experimental discovery of a topological Weyl semimetal state in TaP , 2015, Science Advances.

[65]  M. Troyer,et al.  Topological Phases in InAs_{1-x}Sb_{x}: From Novel Topological Semimetal to Majorana Wire. , 2016, Physical review letters.

[66]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.