Prospects for distinguishing dynamical tides in inspiralling binary neutron stars with third generation gravitational-wave detectors

Tidal effects in gravitational-wave (GW) observations from binary neutron star mergers have the potential to probe ultra-dense matter and shed light on the unknown nuclear equation of state of neutron stars. Tidal effects in inspiralling neutron star binaries become relevant at GW frequencies of a few hundred Hz and require detectors with exquisite high-frequency sensitivity. Third generation GW detectors such as the Einstein Telescope or Cosmic Explorer will be particularly sensitive in this high-frequency regime, allowing us to probe neutron star tides beyond the adiabatic approximation. Here we assess whether dynamical tides can be measured from a neutron star inspiral. We find that the measurability of dynamical tides depends strongly on the neutron star mass and equation of state. For a semi-realistic population of 10,000 inspiralling binary neutron stars, we conservatively estimate that on average O (50) binaries will have measurable dynamical tides. As dynamical tides are characterised not only by the star’s tidal deformability but also by its fundamental ( f -) mode frequency, they present a possibility of probing higher-order tidal effects and test consistency with quasi-universal relations. For a GW170817-like signal in a third generation detector network, we find that the stars’ f -mode frequencies can be measured to within a few hundred Hz.

[1]  K. Kokkotas,et al.  f -mode Imprints in Gravitational Waves from Coalescing Binaries involving Spinning Neutron Stars , 2022, 2205.01705.

[2]  R. Essick Calibration uncertainty’s impact on gravitational-wave observations , 2022, Physical Review D.

[3]  P. Schmidt,et al.  Impact of Dynamical Tides on the Reconstruction of the Neutron Star Equation of State. , 2021, Physical review letters.

[4]  K. Chatziioannou Uncertainty limits on neutron star radius measurements with gravitational waves , 2021, Physical Review D.

[5]  C. Talbot,et al.  Hierarchical Inference of Binary Neutron Star Mass Distribution and Equation of State with Gravitational Waves , 2021, The Astrophysical Journal.

[6]  P. Pani,et al.  Ranking Love Numbers for the Neutron Star Equation of State: The Need for Third-Generation Detectors. , 2021, Physical review letters.

[7]  S. Biscoveanu,et al.  The effect of spin mismodeling on gravitational-wave measurements of the binary neutron star mass distribution , 2021, 2111.13619.

[8]  P. K. Panda,et al.  Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3 , 2021, Physical Review X.

[9]  T. Narikawa,et al.  Gravitational-wave constraints on the GWTC-2 events by measuring the tidal deformability and the spin-induced quadrupole moment , 2021, Physical Review D.

[10]  T. E. Riley,et al.  Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620 and Multimessenger Observations , 2021, The Astrophysical Journal Letters.

[11]  I. Cognard,et al.  The Radius of PSR J0740+6620 from NICER and XMM-Newton Data , 2021, The Astrophysical Journal Letters.

[12]  T. Dietrich,et al.  Spin effects on neutron star fundamental-mode dynamical tides: Phenomenology and comparison to numerical simulations , 2021, Physical Review Research.

[13]  C. Horowitz,et al.  Implications of PREX-2 on the Equation of State of Neutron-Rich Matter. , 2021, Physical review letters.

[14]  S. Bernuzzi,et al.  Updated universal relations for tidal deformabilities of neutron stars from phenomenological equations of state , 2020, 2012.12151.

[15]  S. Biscoveanu,et al.  Sources of systematic error in gravitational-wave measurements of the binary neutron star mass distribution , 2021 .

[16]  P. Pani,et al.  Ranking the Love for the neutron star equation of state: the need for third-generation detectors , 2021 .

[17]  E. Thrane,et al.  Heavy Double Neutron Stars: Birth, Midlife, and Death , 2020, 2011.01495.

[18]  P. Schmidt,et al.  Measuring precession in asymmetric compact binaries , 2020 .

[19]  M. J. Williams,et al.  Bayesian inference for compact binary coalescences with bilby: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue , 2020, Monthly Notices of the Royal Astronomical Society.

[20]  Y.Fujii,et al.  Overview of KAGRA: Detector design and construction history , 2020, Progress of Theoretical and Experimental Physics.

[21]  E. Poisson Gravitomagnetic tidal resonance in neutron-star binary inspirals , 2020, Physical Review D.

[22]  Hang Yu,et al.  Excitation of f -modes during mergers of spinning binary neutron star , 2020, Physical Review D.

[23]  M. Colleoni,et al.  Setting the cornerstone for a family of models for gravitational waves from compact binaries: The dominant harmonic for nonprecessing quasicircular black holes , 2020, 2001.11412.

[24]  P. K. Panda,et al.  GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M⊙ , 2020 .

[25]  L. Rezzolla,et al.  Postmerger Gravitational-Wave Signatures of Phase Transitions in Binary Mergers. , 2019, Physical review letters.

[26]  C. Broeck,et al.  Science case for the Einstein telescope , 2019, Journal of Cosmology and Astroparticle Physics.

[27]  P. Schmidt,et al.  Gravitational-wave asteroseismology with fundamental modes from compact binary inspirals , 2019, Nature Communications.

[28]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[29]  Duncan A. Brown,et al.  Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO , 2019, 1907.04833.

[30]  Y. Bouffanais,et al.  Gravitational-wave detection rates for compact binaries formed in isolation: LIGO/Virgo O3 and beyond , 2019, Physical Review D.

[31]  P. Schmidt,et al.  Frequency domain model of f -mode dynamic tides in gravitational waveforms from compact binary inspirals , 2019, Physical Review D.

[32]  P. Lasky,et al.  Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy , 2018, The Astrophysical Journal Supplement Series.

[33]  Lawrence E. Kidder,et al.  Distinguishing the nature of comparable-mass neutron star binary systems with multimessenger observations: GW170817 case study , 2018, Physical Review D.

[34]  B. A. Boom,et al.  Properties of the Binary Neutron Star Merger GW170817 , 2019 .

[35]  Variable Stars Science Collaboration,et al.  Target of Opportunity Observations of Gravitational Wave Events with LSST , 2018, 1812.04051.

[36]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[37]  M. Fishbach,et al.  Does the Black Hole Merger Rate Evolve with Redshift? , 2018, The Astrophysical Journal.

[38]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[39]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[40]  K. Chatziioannou,et al.  Constructing gravitational waves from generic spin-precessing compact binary inspirals , 2017, 1703.03967.

[41]  E. Poisson,et al.  Gravitomagnetic tidal currents in rotating neutron stars , 2016, 1612.04255.

[42]  N. Yunes,et al.  Approximate universal relations among tidal parameters for neutron star binaries , 2016, 1608.06187.

[43]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[44]  F. Gulminelli,et al.  Unified treatment of subsaturation stellar matter at zero and finite temperature , 2015, 1504.04493.

[45]  C. Broeck,et al.  Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars , 2015, 1503.05405.

[46]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[47]  The Ligo Scientific Collaboration Advanced LIGO , 2014, 1411.4547.

[48]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[49]  P. Leung,et al.  Multipolar universal relations between f -mode frequency and tidal deformability of compact stars , 2014, 1408.3789.

[50]  B. Lackey,et al.  Systematic and statistical errors in a bayesian approach to the estimation of the neutron-star equation of state using advanced gravitational wave detectors , 2014, 1402.5156.

[51]  K. Chatziioannou,et al.  SPIN-PRECESSION: BREAKING THE BLACK HOLE–NEUTRON STAR DEGENERACY , 2014, 1402.3581.

[52]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[53]  K. Kokkotas,et al.  Gravitational wave asteroseismology of fast rotating neutron stars with realistic equations of state , 2013, 1305.7197.

[54]  V. Cardoso,et al.  Equation-of-state-independent relations in neutron stars , 2013, 1304.2052.

[55]  T. Damour,et al.  Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals , 2012, 1203.4352.

[56]  H. Janka,et al.  Gravitational waves and non-axisymmetric oscillation modes in mergers of compact object binaries , 2011, 1105.0368.

[57]  T. Hinderer,et al.  Post-1-Newtonian tidal effects in the gravitational waveform from binary inspirals , 2011, 1101.1673.

[58]  B. Lackey,et al.  Tidal deformability of neutron stars with realistic equations of state , 2009, 0911.3535.

[59]  T. Damour,et al.  Relativistic tidal properties of neutron stars , 2009, 0906.0096.

[60]  P. Danielewicz,et al.  Symmetry energy I: Semi-infinite matter , 2008, 0807.3743.

[61]  Duncan A. Brown,et al.  Model waveform accuracy standards for gravitational wave data analysis , 2008, 0809.3844.

[62]  T. Hinderer,et al.  Constraining neutron-star tidal Love numbers with gravitational-wave detectors , 2007, 0709.1915.

[63]  '. Racine,et al.  Gravitomagnetic resonant excitation of Rossby modes in coalescing neutron star binaries , 2006, gr-qc/0601029.

[64]  R. Lang,et al.  Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession , 2006, gr-qc/0608062.

[65]  D. Lai,et al.  Resonant tidal excitations of inertial modes in coalescing neutron star binaries , 2006, astro-ph/0604163.

[66]  Alberto Vecchio,et al.  LISA observations of rapidly spinning massive black hole binary systems , 2003, astro-ph/0304051.

[67]  W. Ho,et al.  Resonant tidal excitations of rotating neutron stars in coalescing binaries , 1998, astro-ph/9812116.

[68]  V. Pandharipande,et al.  Equation of state of nucleon matter and neutron star structure , 1998, nucl-th/9804027.

[69]  N. Andersson,et al.  Towards gravitational wave asteroseismology , 1997, gr-qc/9711088.

[70]  E. Poisson Gravitational waves from inspiraling compact binaries: The quadrupole-moment term , 1997, gr-qc/9709032.

[71]  Paul-Gerhard Reinhard,et al.  Nuclear effective forces and isotope shifts , 1995 .

[72]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[73]  Xu,et al.  General-relativistic celestial mechanics. II. Translational equations of motion. , 1992, Physical review. D, Particles and fields.

[74]  T. Ainsworth,et al.  The nuclear symmetry energy in relativistic Brueckner-Hartree-Fock calculations , 1987 .

[75]  Thibault Damour,et al.  GRAVITATIONAL RADIATION AND THE MOTION OF COMPACT BODIES , 1982 .