Abgasnachbehandlung in mobilen Systemen: Stand der Technik, Herausforderungen und Perspektiven

Eine ganzheitliche Betrachtungsweise von Abgasnachbehandlungssystemen ist derzeit der attraktivste Ansatzpunkt fur die weitere Verminderung der Schadstoffemissionen und um auf neue Herausforderungen durch strengere Emissionsgrenzwerte, neue Rohstoffbasis und effektivere Motorkonzepte schneller zu reagieren. Dieser Artikel gibt einen Uberblick zu gegenwartigen Abgasnachbehandlungssystemen. Heutige und zukunftige Herausforderungen und Ansatze zu deren Bewaltigung werden diskutiert. Bei den vorgestellten Losungsansatzen spielen hierarchische Modellierung von DFT-Berechnungen bis zur CFD-Simulation des kompletten Abgasstranges, realitatsnahe Abgasprufstande und Alterungsverfahren sowie On-board-Diagnostik ebenso wie die Charakterisierung von Katalysatoren insbesondere unter Reaktionsbedingungen sowie moglichst alle Langenskalen eine wichtige Rolle. In Zukunft werden wissensbasierte roboter-kontrollierte Praparation und dynamische Modelle, gekoppelt mit Informationen aus dem realen Betrieb, Forschung und Entwicklung masgeblich unterstutzen.

[1]  Pio Forzatti,et al.  Relevance of the Nitrite Route in the NOx Adsorption Mechanism over Pt–Ba/Al2O3 NOx Storage Reduction Catalysts Investigated by using Operando FTIR Spectroscopy , 2012 .

[2]  Grigorios C. Koltsakis,et al.  Modeling dynamic phenomena in 3-way catalytic converters , 1999 .

[3]  J. Grunwaldt,et al.  Insight into the structure of Pd/ZrO2 during the total oxidation of methane using combined in situ XRD, X-ray absorption and Raman spectroscopy , 2009 .

[4]  J. Grunwaldt,et al.  In Situ Investigations of Structural Changes in Cu/ZnO Catalysts , 2000 .

[5]  Myriam H. Aguirre,et al.  The influence of chemical and thermal aging on the catalytic activity of a monolithic diesel oxidation catalyst , 2009 .

[6]  S. Järås,et al.  Experimental and numerical investigation of supported rhodium catalysts for partial oxidation of methane in exhaust gas diluted reaction mixtures , 2007 .

[7]  Michel Primet,et al.  Complete oxidation of methane at low temperature over noble metal based catalysts: a review , 2002 .

[8]  J. Grunwaldt,et al.  X-ray Absorption Spectroscopic Microscopy: From the Micro- to the Nanoscale , 2009 .

[9]  O. Deutschmann,et al.  Influence of coadsorbates on the NO dissociation on a rhodium(311) surface. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[10]  L. Mädler,et al.  Two-Nozzle Flame Synthesis of Pt/Ba/Al2O3 for NOx Storage , 2006 .

[11]  M. Bowker Automotive catalysis studied by surface science. , 2008, Chemical Society reviews.

[12]  S. Banerjee,et al.  Catalysts for combustion of methane and lower alkanes , 2002 .

[13]  M. D. Checkel,et al.  Heat and mass transfer limitations in pre-turbocharger catalysts , 2007 .

[14]  J. Grunwaldt,et al.  On the mechanism of the SCR reaction on Fe/HBEA zeolite , 2009 .

[15]  T. Ressler,et al.  Chapter 6 Characterization of Catalysts in Reactive Atmospheres by X‐ray Absorption Spectroscopy , 2009 .

[16]  O. Deutschmann,et al.  Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases , 2009 .

[17]  Jc Jaap Schouten,et al.  Automotive Exhaust Gas Conversion: From Elementary Step Kinetics to Prediction of Emission Dynamics , 2001 .

[18]  Keiichi Narita,et al.  Self-regenerating Rh- and Pt-based perovskite catalysts for automotive-emissions control. , 2006, Angewandte Chemie.

[19]  Reyes García-Contreras,et al.  Effect of Ethanol on Blending Stability and Diesel Engine Emissions , 2009 .

[20]  O Deutschmann,et al.  Detailed surface reaction mechanism in a three-way catalyst. , 2001, Faraday discussions.

[21]  M. Janousch,et al.  Unique Dynamic Changes of Fe Cationic Species under NH3-SCR Conditions , 2012 .

[22]  Sounak Roy,et al.  NOx storage-reduction catalysis: from mechanism and materials properties to storage-reduction performance. , 2009, Chemical reviews.

[23]  R. Hayes,et al.  Calculating effectiveness factors in non-uniform washcoat shapes , 2005 .

[24]  Gerhard Ertl,et al.  Oscillatory Kinetics in Heterogeneous Catalysis , 1995 .

[25]  Sung Bong Kang,et al.  Activity Function for Describing Alteration of Three-Way Catalyst Performance over Palladium-Only Three-Way Catalysts by Catalyst Mileage , 2011 .

[26]  Georgios Karavalakis,et al.  Biodiesel emissions profile in modern diesel vehicles. Part 2: Effect of biodiesel origin on carbonyl, PAH, nitro-PAH and oxy-PAH emissions. , 2011, The Science of the total environment.

[27]  Juhun Song,et al.  IMPACT OF ALTERNATIVE FUELS ON SOOT PROPERTIES AND DPF REGENERATION , 2007 .

[28]  C. Christensen,et al.  Improved Automotive NOx Aftertreatment System: Metal Ammine Complexes as NH3 Source for SCR Using Fe-Containing Zeolite Catalysts , 2009 .

[29]  Lilian L. N. Guarieiro,et al.  The Role of Additives for Diesel and Diesel Blended (Ethanol or Biodiesel) Fuels: A Review , 2007 .

[30]  Sotiris E. Pratsinis,et al.  Flame Aerosol Synthesis of Vanadia–Titania Nanoparticles: Structural and Catalytic Properties in the Selective Catalytic Reduction of NO by NH3 , 2001 .

[31]  Søren Dahl,et al.  Ceria-catalyzed soot oxidation studied by environmental transmission electron microscopy , 2008 .

[32]  S. Pratsinis,et al.  Ceramic foams directly-coated with flame-made V2O5/TiO2 for synthesis of phthalic anhydride , 2006 .

[33]  J. Grunwaldt,et al.  The fate of platinum in Pt/Ba/CeO2 and Pt/Ba/Al2O3 catalysts during thermal aging , 2007 .

[34]  Jan Stötzel,et al.  T-REX: new software for advanced QEXAFS data analysis. , 2012, Journal of synchrotron radiation.

[35]  R. Niven Ethanol in gasoline: environmental impacts and sustainability review article , 2005 .

[36]  Alfons Baiker,et al.  Insight into the structure of supported palladium catalysts during the total oxidation of methane. , 2007, Chemical communications.

[37]  J. Grunwaldt,et al.  Comparative study of structural properties and NOx storage-reduction behavior of Pt/Ba/CeO2 and Pt/Ba/Al2O3 , 2008 .

[38]  T. Schilcher,et al.  Assessing noise sources at synchrotron infrared ports , 2011, Journal of synchrotron radiation.

[39]  Theophil S. Auckenthaler,et al.  Modeling of a Three-Way Catalytic Converter with Respect to Fast Transients of λ-Sensor Relevant Exhaust Gas Components , 2004 .

[40]  L. Gatti,et al.  Five years of formaldehyde and acetaldehyde monitoring in the Rio de Janeiro downtown area - Brazil , 2010 .

[41]  E. Zervas,et al.  Influence of fuel and air/fuel equivalence ratio on the emission of hydrocarbons from a SI engine. 2. Formation pathways and modelling of combustion processes , 2004 .

[42]  R. Schlögl,et al.  Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. , 2010, The Review of scientific instruments.

[43]  M. V. Ganduglia-Pirovano,et al.  Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges , 2007 .

[44]  J. Gieshoff,et al.  Inverse hysteresis during the NO oxidation on Pt under lean conditions , 2009 .

[45]  Steffen Tischer,et al.  Loading and Aging Effects in Exhaust Gas After-Treatment Catalysts with Pt As Active Component , 2010 .

[46]  S. Pratsinis,et al.  Thermal stability and catalytic activity of flame-made silica–vanadia–tungsten oxide–titania , 2007 .

[47]  J. Llorca,et al.  Improved high temperature stability of NH3-SCR catalysts based on rare earth vanadates supported on TiO2WO3SiO2 , 2012 .

[48]  F. Ribeiro,et al.  Integrated operando X-ray absorption and DFT characterization of Cu–SSZ-13 exchange sites during the selective catalytic reduction of NOx with NH3 , 2012 .

[49]  B. Weckhuysen,et al.  Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. , 2002, Chemical communications.

[50]  Jiming Hao,et al.  A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels , 2003 .

[51]  Steffen Tischer,et al.  Transient three-dimensional simulations of a catalytic combustion monolith using detailed models for heterogeneous and homogeneous reactions and transport phenomena , 2001 .

[52]  A. Tsolakis,et al.  Speciation of particulate matter and hydrocarbon emissions from biodiesel combustion and its reduction by aftertreatment , 2012 .

[53]  S. Dahl,et al.  The role of monomeric iron during the selective catalytic reduction of NOx by NH3 over Fe-BEA zeolite catalysts , 2009 .

[54]  O. Deutschmann,et al.  Coverage dependence of oxygen decomposition and surface diffusion on rhodium 111: a DFT study. , 2005, The Journal of chemical physics.

[55]  Gerhard Ertl,et al.  Kinetic Oscillations in the Platinum-Catalyzed Oxidation of Co , 1982 .

[56]  M. Scheffler,et al.  CO oxidation at Pd"100…: A first-principles constrained thermodynamics study , 2007, cond-mat/0701777.

[57]  J. Grunwaldt,et al.  Thermal ageing phenomena and strategies towards reactivation of NOx- storage catalysts , 2007 .

[58]  Jae-Soon Choi,et al.  NOx storage–reduction characteristics of Ba-based lean NOx trap catalysts subjected to simulated road aging , 2010 .

[59]  J. Grunwaldt,et al.  Combining XRD and EXAFS with on-Line Catalytic Studies for in situ Characterization of Catalysts , 2002 .

[60]  P Tourlonias,et al.  Model-based comparative study of Euro 6 diesel aftertreatment concepts, focusing on fuel consumption , 2011 .

[61]  J. Sauer,et al.  Oxidative dehydrogenation of propane by monomeric vanadium oxide sites on silica support , 2007 .

[62]  Tapio Salmi,et al.  Deactivation of postcombustion catalysts, a review , 2004 .

[63]  D. Vlachos,et al.  Microkinetic modeling of the fast selective catalytic reduction of nitrogen oxide with ammonia on H-ZSM5 based on first principles , 2011 .

[64]  L. Mädler,et al.  Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. , 2010, Nanoscale.

[65]  Robert L. McCormick,et al.  Combustion of fat and vegetable oil derived fuels in diesel engines , 1998 .

[66]  G. Eigenberger,et al.  Autoabgasreinigung – eine Herausforderung für die Verfahrenstechnik , 2005 .

[67]  Jae-Soon Choi,et al.  Spatiotemporal distribution of NOx storage and impact on NH3 and N2O selectivities during lean/rich cycling of a Ba-based lean NOx trap catalyst , 2012 .

[68]  D. Duprez,et al.  NOx abatement for lean-burn engines under lean–rich atmosphere over mixed NSR-SCR catalysts: Influences of the addition of a SCR catalyst and of the operational conditions , 2009 .

[69]  W. Epling,et al.  Diesel Oxidation Catalysts , 2011 .

[70]  Robert J. Farrauto,et al.  Catalytic chemistry of supported palladium for combustion of methane , 1992 .

[71]  Entfernung von Stickstoffoxiden aus Sauerstoff enthaltenden Automobil‐Abgasen , 2000 .

[72]  Giovanni Fiengo,et al.  Dual-UEGO active catalyst control for emissions reduction: design and experimental validation , 2005, IEEE Transactions on Control Systems Technology.

[73]  Ralf Moos,et al.  Catalysts as Sensors—A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment , 2010, Sensors.

[74]  Lino Guzzella,et al.  Is oxygen storage in three-way catalysts an equilibrium controlled process? , 2009 .

[75]  Sergio Machado Corrêa,et al.  Carbonyl emissions in diesel and biodiesel exhaust. , 2008 .

[76]  Steffen Tischer,et al.  Modeling of transport and chemistry in channel flows of automotive catalytic converters , 2010 .

[77]  J. Nørskov,et al.  A high-density ammonia storage/delivery system based on Mg(NH3)6Cl2 for SCR-DeNOx in vehicles , 2006 .

[78]  Steffen Tischer,et al.  Recent advances in numerical modeling of catalytic monolith reactors , 2005 .

[79]  W. Maier,et al.  A combinatorial approach for the discovery of low temperature soot oxidation catalysts , 2007 .

[80]  A. Urakawa,et al.  Influence of Pt–Ba Proximity on NOx Storage–Reduction Mechanisms: A Space- and Time-Resolved In Situ Infrared Spectroscopic Study , 2009 .

[81]  A. Urakawa,et al.  Space- and time-resolved combined DRIFT and Raman spectroscopy: monitoring dynamic surface and bulk processes during NO(x) storage reduction. , 2008, Angewandte Chemie.

[82]  J. Grunwaldt,et al.  Investigation of the ignition behaviour of the noble metal catalyzed catalytic partial oxidation of methane , 2009 .

[83]  Martyn V. Twigg,et al.  Catalytic control of emissions from cars , 2011 .

[84]  Christian G. Schroer,et al.  Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales. , 2010, Chemical Society reviews.

[85]  J. Lavalley,et al.  In Situ FTIR Study of the NO+CO Reaction on a Silica-Supported Platinum Catalyst at Atmospheric Pressure Using a New Pulse Technique , 2001 .

[86]  Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides , 2011 .

[87]  J. Grunwaldt,et al.  On the presence of Fe(IV) in Fe-ZSM-5 and FeSrO3-x --unequivocal detection of the 3d4 spin system by resonant inelastic X-ray scattering. , 2006, The journal of physical chemistry. B.

[88]  James C. Peyton Jones,et al.  A model-based approach to automotive three-way catalyst on-board monitoring , 2008 .

[89]  H. Topsøe,et al.  Developments in operando studies and in situ characterization of heterogeneous catalysts , 2003 .

[90]  J. Nørskov,et al.  Atomic-scale imaging of carbon nanofibre growth , 2004, Nature.

[91]  O. Deutschmann,et al.  Macro‐ and Microkinetic Simulation of Diesel Oxidation Catalyst: Effect of Aging, Noble Metal Loading and Platinum Oxidation , 2013 .

[92]  Sotiris E. Pratsinis,et al.  Flame-made Alumina Supported Pd–Pt Nanoparticles: Structural Properties and Catalytic Behavior in Methane Combustion , 2005 .

[93]  J. Niemantsverdriet Spectroscopy in Catalysis: An Introduction , 2010 .

[94]  C. Prestipino,et al.  Novel high-temperature reactors for in situ studies of three-way catalysts using turbo-XAS. , 2009, Journal of synchrotron radiation.

[95]  Rafal E. Dunin-Borkowski,et al.  Imaging Catalysts at Work: A Hierarchical Approach from the Macro‐ to the Meso‐ and Nano‐scale , 2013 .

[96]  Frédéric Thibault-Starzyk,et al.  Analysing and understanding the active site by IR spectroscopy. , 2010, Chemical Society reviews.

[97]  Frank Haaß,et al.  Structural Characterization of Automotive Catalysts , 2005 .

[98]  Uwe Bergmann,et al.  High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes—electronic and structural information , 2005 .

[99]  Lino Guzzella,et al.  Analysis of a kinetic model describing the dynamic operation of a three-way catalyst , 2007 .

[100]  Atsushi Urakawa,et al.  In situ PM-IRRAS study of powder catalyst: Dynamic evolutions of species on catalyst and in gas phase during NOx storage-reduction , 2010 .

[101]  S. Pratsinis,et al.  Combination of flame synthesis and high-throughput experimentation: The preparation of alumina-supported noble metal particles and their application in the partial oxidation of methane , 2007 .

[102]  Martin Elsener,et al.  A model gas study of ammonium formate, methanamide and guanidinium formate as alternative ammonia precursor compounds for the selective catalytic reduction of nitrogen oxides in diesel exhaust gas , 2009 .

[103]  Grigorios C. Koltsakis,et al.  Dynamic behavior issues in three-way catalyst modeling , 1999 .

[104]  O. Kröcher,et al.  The State of the Art in Selective Catalytic Reduction of NOx by Ammonia Using Metal‐Exchanged Zeolite Catalysts , 2008 .

[105]  M. Twigg Progress and future challenges in controlling automotive exhaust gas emissions , 2007 .

[106]  Hong He,et al.  Selective catalytic reduction of NOx over Ag/Al2O3 catalyst: from reaction mechanism to diesel engine test , 2005 .

[107]  E. Tronconi,et al.  Diesel NOx aftertreatment catalytic technologies: Analogies in LNT and SCR catalytic chemistry , 2010 .

[108]  Søren Dahl,et al.  Structure–activity relationships of Pt/Al2O3 catalysts for CO and NO oxidation at diesel exhaust conditions , 2012 .

[109]  Ulrich Nieken,et al.  A global description of DOC kinetics for catalysts with different platinum loadings and aging status , 2010 .

[110]  G. Eigenberger,et al.  Experimental results concerning the role of Pt, Rh, Ba, Ce and Al2O3 on NOx-storage catalyst behaviour , 2007 .

[111]  Alfons Baiker,et al.  2D-mapping of the catalyst structure inside a catalytic microreactor at work: partial oxidation of methane over Rh/Al2O3. , 2006, The journal of physical chemistry. B.

[112]  G. Graham,et al.  Effect of alloy composition on dispersion stability and catalytic activity for NO oxidation over alumina-supported Pt–Pd catalysts , 2007 .

[113]  J. Grunwaldt,et al.  Oscillatory Behavior during the Catalytic Partial Oxidation of Methane: Following Dynamic Structural Changes of Palladium Using the QEXAFS Technique , 2012 .

[114]  G. Groppi,et al.  Synergy of homogeneous and heterogeneous chemistry probed by in situ spatially resolved measurements of temperature and composition. , 2011, Angewandte Chemie.

[115]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[116]  Keiichi Narita,et al.  The intelligent catalyst having the self-regenerative function of Pd, Rh and Pt for automotive emissions control , 2006 .

[117]  Peter Arendt Jensen,et al.  A review of catalytic upgrading of bio-oil to engine fuels , 2011 .

[118]  W. Manogue,et al.  Carbon monoxide and propene oxidation by iron oxides for auto-emission control , 1988 .

[119]  J. Grunwaldt,et al.  Potential and Limitations of Natural Chabazite for Selective Catalytic Reduction of NOx with NH3 , 2013 .

[120]  A. Demirbas,et al.  Progress and recent trends in biodiesel fuels , 2009 .

[121]  D. Ferri,et al.  Modulation Excitation X-Ray Absorption Spectroscopy to Probe Surface Species on Heterogeneous Catalysts , 2011 .

[122]  Olaf Deutschmann,et al.  Modeling and simulation of heterogeneous catalytic reactions : from the molecular process to the technical system , 2011 .

[123]  Juhun Song,et al.  The role of fuel-borne catalyst in diesel particulate oxidation behavior , 2006 .