Nonarchimedean bivariant K-theory

. We introduce bivariant K -theory for nonarchimedean bornological algebras over a complete discrete valuation ring V . This is the universal target for dagger homotopy invariant, matricially stable and excisive functors, similar to bivariant K -theory for locally convex topological C -algebras and algebraic bivariant K -theory. As in the archimedean case, we use the universal property to construct a bivariant Chern character into analytic and periodic cyclic homology. When the first variable is the ground algebra V , we get a version of Weibel’s homotopy algebraic K -theory, which we call stabilised overconvergent analytic K -theory . The resulting analytic K -theory satisfies dagger homotopy invariance, stability by completed matrix algebras, and excision.

[1]  G. Cortiñas,et al.  A Quillen model structure of local homotopy equivalences , 2022, 2207.02979.

[2]  Emanuel Rodr'iguez Cirone,et al.  Algebraic kk-theory and the KH-isomorphism conjecture , 2022, 2205.04558.

[3]  R. Meyer,et al.  Local cyclic homology for nonarchimedean Banach algebras , 2022, 2204.00508.

[4]  Oren Ben-Bassat,et al.  Analytification, localization and homotopy epimorphisms , 2021, Bulletin des Sciences Mathématiques.

[5]  Guillermo Cortinas,et al.  Classifying Leavitt path algebras up to involution preserving homotopy , 2021, Mathematische Annalen.

[6]  Ralf Meyer,et al.  Analytic cyclic homology in positive characteristic , 2021, 2109.01470.

[7]  Florian Strunk,et al.  Towards Vorst's conjecture in positive characteristic , 2018, Compositio Mathematica.

[8]  R. Meyer,et al.  Non-Archimedean analytic cyclic homology , 2019, 1912.09366.

[9]  G. Cortiñas,et al.  Homotopy classification of Leavitt path algebras , 2018, 1806.09242.

[10]  A. Thom,et al.  Aspects of $p$-adic operator algebras , 2019, 1904.12723.

[11]  R. Meyer,et al.  Dagger completions and bornological torsion-freeness , 2018, The Quarterly Journal of Mathematics.

[12]  S. Saito,et al.  $K$-Theory of Non-Archimedean Rings. I , 2018, Documenta Mathematica.

[13]  R. Meyer,et al.  Nonarchimedean Bornologies, Cyclic Homology and Rigid Cohomology , 2017, Documenta Mathematica.

[14]  Eugenia Ellis EQUIVARIANT ALGEBRAIC KK-THEORY , 2017 .

[15]  T. Nikolaus,et al.  On the relation between K- and L-theory of $$C^*$$C∗-algebras , 2016, 1608.02903.

[16]  Alberto Vezzani The Monsky-Washnitzer and the overconvergent realizations , 2015, 1509.01718.

[17]  Georg Tamme KAROUBI’S RELATIVE CHERN CHARACTER, THE RIGID SYNTOMIC REGULATOR, AND THE BLOCH–KATO EXPONENTIAL MAP , 2011, Forum of Mathematics, Sigma.

[18]  Otgonbayar Uuye HOMOTOPICAL ALGEBRA FOR C -ALGEBRAS , 2013 .

[19]  C. Weibel,et al.  The K-Book: An Introduction to Algebraic K-Theory , 2013 .

[20]  Eugenia Ellis Equivariant algebraic kk-theory and adjointness theorems , 2013, 1301.1491.

[21]  L. Hesselholt,et al.  On a conjecture of Vorst , 2009, 0911.2752.

[22]  Gonçalo Tabuada A Guided Tour Through the Garden of Noncommutative Motives , 2011, 1108.3787.

[23]  G. Cortiñas,et al.  Algebraic v. Topological K-Theory:A Friendly Match , 2009, 0903.3983.

[24]  Georg Tamme The relative Chern character and regulators , 2010, 1007.1385.

[25]  Paul G. Goerss,et al.  Simplicial Homotopy Theory , 2009, Modern Birkhäuser Classics.

[26]  J. Rosenberg,et al.  Topological and Bivariant K-Theory , 2007 .

[27]  R. Meyer Local and Analytic Cyclic Homology , 2007 .

[28]  C. Weibel,et al.  K-regularity, cdh-fibrant Hochschild homology, and a conjecture of Vorst , 2006, math/0605367.

[29]  A. Thom,et al.  Bivariant algebraic K-theory , 2006, math/0603531.

[30]  A. Thom,et al.  Algebraic K -theory and locally convex algebras , 2005, math/0503417.

[31]  J. Cuntz Bivariant $K$-theory and the Weyl algebra , 2004, math/0401295.

[32]  James F. Davis,et al.  Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory. , 1998 .

[33]  M. Puschnigg Asymptotic Cyclic Cohomology , 1996 .

[34]  G. Kasparov EquivariantKK-theory and the Novikov conjecture , 1988 .

[35]  J. Cuntz A new look at KK-theory , 1987 .

[36]  Adina Schenfeld-Calvo K-théorie des anneaux ultramétriques , 1985 .

[37]  G. Kasparov TOPOLOGICAL INVARIANTS OF ELLIPTIC OPERATORS. I: K-HOMOLOGY , 1975 .

[38]  Kenneth S. Brown,et al.  Abstract homotopy theory and generalized sheaf cohomology , 1973 .