Flow topology in a steady three-dimensional lid-driven cavity

Abstract We present in this paper a thorough investigation of three-dimensional flow in a cubical cavity, subject to a constant velocity lid on its roof. In this steady-state analysis, we adopt the mixed formulation on tri-quadratic elements to preserve mass conservation. To resolve difficulties in the asymmetric and indefinite large-size matrix equations, we apply the BiCGSTAB solution solver. To achieve stability, weighting functions are designed in favor of variables on the upstream side. To achieve accuracy, the weighting functions are properly chosen so that false diffusion errors can be largely suppressed by the equipped streamline operator. Our aim is to gain some physical insight into the vortical flow using a theoretically rigorous topological theory. To broaden our understanding of the vortex dynamics in the cavity, we also study in detail the longitudinal spiralling motion in the flow interior.

[1]  I. Babuska Error-bounds for finite element method , 1971 .

[2]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[3]  J. Douglas,et al.  Stabilized mixed methods for the Stokes problem , 1988 .

[4]  R. Hwang,et al.  Effect of Reynolds number on the eddy structure in a lid-driven cavity , 1998 .

[5]  M. D. Deshpande,et al.  FLUID MECHANICS IN THE DRIVEN CAVITY , 2000 .

[6]  R. Hwang,et al.  Finite volume analysis of spiral motion in a rectangular lid-driven cavity , 1996 .

[7]  A. Acrivos,et al.  Steady flows in rectangular cavities , 1967, Journal of Fluid Mechanics.

[8]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[9]  Thomas J. R. Hughes,et al.  Numerical Methods in Laminar and Turbulent Flows , 1979 .

[10]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[11]  Robert L. Street,et al.  Three‐dimensional unsteady flow simulations: Alternative strategies for a volume‐averaged calculation , 1989 .

[12]  J. Koseff,et al.  A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates , 1994 .

[13]  Robert L. Street,et al.  Numerical simulation of three‐dimensional flow in a cavity , 1985 .

[14]  Robert L. Street,et al.  Visualization Studies of a Shear Driven Three-Dimensional Recirculating Flow , 1984 .

[15]  A. Davey,et al.  Boundary-layer flow at a saddle point of attachment , 1961, Journal of Fluid Mechanics.

[16]  D. Degani,et al.  Graphical visualization of vortical flows by means of helicity , 1990 .

[17]  T. P. Chiang,et al.  Numerical prediction of eddy structure in a shear-driven cavity , 1997 .

[18]  Michel Deville,et al.  Numerical Simulation of 3-D Incompressible Unsteady Viscous Laminar Flows: A GAMM-Workshop , 1992 .

[19]  On End-Wall Corner Vortices in a Lid-Driven Cavity , 1997 .

[20]  J. Hunt,et al.  Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization , 1978, Journal of Fluid Mechanics.

[21]  H. Kawai,et al.  Numerical Flow Analysis in a Cubic Cavity by the GSMAC Finite-Element Method : In the Case Where the Reynolds Numbers are 1000 and 3200 , 1990 .

[22]  Robert L. Street,et al.  Non-linear transient phenomena in a complex recirculating flow: A numerical investigation , 1988 .

[23]  Received December,et al.  Error-Bounds for Finite Element M ethod* , 1971 .

[24]  Louis Rosenhead,et al.  Laminar boundary layers , 1963 .

[25]  Tony W. H. Sheu,et al.  Element-by-Element Parallel Computation of Incompressible Navier-Stokes Equations in Three Dimensions , 1999, SIAM J. Sci. Comput..

[26]  Michel Deville,et al.  Numerical simulation of 3-D incompressible unsteady viscous laminar flows , 1992 .

[27]  R. Hwang,et al.  Three-Dimensional Vortex Dynamics in a Shear-Driven Rectangular Cavity , 1997 .

[28]  O. Burggraf Analytical and numerical studies of the structure of steady separated flows , 1966, Journal of Fluid Mechanics.

[29]  K. C. Wang Boundary layer over a blunt body at low incidence with circumferential reversed flow , 1975 .

[30]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[31]  Tony W. H. Sheu,et al.  An element-by-element BICGSTAB iterative method for three-dimensional steady Navier-Stokes equations , 1997 .

[32]  V. Babu,et al.  Numerical solution of the incompressible three-dimensional Navier-Stokes equations , 1994 .

[33]  Robert L. Street,et al.  On End Wall Effects in a Lid-Driven Cavity Flow , 1984 .

[34]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .

[35]  Robert L. Street,et al.  Three-dimensional lid-driven cavity flow: experiment and simulation , 1983 .

[36]  Robert L. Street,et al.  The Lid-Driven Cavity Flow: A Synthesis of Qualitative and Quantitative Observations , 1984 .

[37]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[38]  David R. Noble,et al.  Comparison of Accuracy and Performance for Lattice Boltzmann and Finite Difference Simulations of Steady Viscous Flow , 1996 .

[39]  J. Koseff,et al.  Reynolds number and end‐wall effects on a lid‐driven cavity flow , 1989 .

[40]  Cyrus K. Aidun,et al.  Global stability of a lid‐driven cavity with throughflow: Flow visualization studies , 1991 .