Giant magnetic anisotropy of transition-metal dimers on defected graphene.

Continuous miniaturization of magnetic units in spintronics and quantum computing devices inspires efforts to search for magnetic nanostructures with giant magnetic anisotropy energy (MAE) and high structural stability. Through density functional theory calculations, we found that either Pt-Ir or Os-Ru dimer forms a stable vertical structure on the defected graphene and possess an MAE larger than 60 meV, sufficient for room-temperature applications. Interestingly, their MAEs can be conveniently manipulated by using an external electric field, which makes them excellent magnetic units in spintronics and quantum computing devices.

[1]  R. Wu,et al.  Control of the magnetism and magnetic anisotropy of a single-molecule magnet with an electric field. , 2012, Physical review letters.

[2]  J. Wang,et al.  Structural and magnetic properties of small 4d transition metal clusters: role of spin-orbit coupling. , 2012, The journal of physical chemistry. A.

[3]  D. Eigler,et al.  Bistability in Atomic-Scale Antiferromagnets , 2012, Science.

[4]  Yingbang Yao,et al.  Doping monolayer graphene with single atom substitutions. , 2012, Nano letters.

[5]  Wei-gang Wang,et al.  Electric-field-assisted switching in magnetic tunnel junctions. , 2012, Nature materials.

[6]  H. Wende,et al.  Graphene as a reversible spin manipulator of molecular magnets. , 2011, Physical review letters.

[7]  S. Kim,et al.  Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. , 2011, Physical review letters.

[8]  K. Koepernik,et al.  CoIr-carbon complexes with magnetic anisotropies larger than 0.2 eV: A density-functional-theory prediction , 2010, 1010.5663.

[9]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[10]  Alfredo Pasquarello,et al.  Metal adatoms on graphene and hexagonal boron nitride: Towards rational design of self-assembly templates , 2010, 1007.1704.

[11]  F. Banhart,et al.  Trapping of metal atoms in vacancies of carbon nanotubes and graphene. , 2010, ACS nano.

[12]  Kwiseon Kim,et al.  Divacancy-nitrogen-assisted transition metal dispersion and hydrogen adsorption in defective graphene: A first-principles study , 2010 .

[13]  Gotthard Seifert,et al.  Co dimers on hexagonal carbon rings proposed as subnanometer magnetic storage bits. , 2009, Physical review letters.

[14]  J. Hafner,et al.  Magnetic anisotropy of transition-metal dimers: Density functional calculations , 2009 .

[15]  E. Tok,et al.  Density functional theory study of Fe, Co, and Ni adatoms and dimers adsorbed on graphene , 2009 .

[16]  A. Krasheninnikov,et al.  Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. , 2009, Physical review letters.

[17]  C. Canali,et al.  Transition-metal dimers and physical limits on magnetic anisotropy. , 2007, Nature materials.

[18]  K. Kern,et al.  Engineering atomic and molecular nanostructures at surfaces , 2005, Nature.

[19]  K. Kern,et al.  Giant Magnetic Anisotropy of Single Cobalt Atoms and Nanoparticles , 2003, Science.

[20]  A. Freeman,et al.  Spin}orbit induced magnetic phenomena in bulk metals and their surfaces and interfaces , 1999 .

[21]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[22]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[23]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[24]  S. Charap,et al.  Thermal stability of recorded information at high densities , 1996 .

[25]  Wu,et al.  Torque method for the theoretical determination of magnetocrystalline anisotropy. , 1996, Physical review. B, Condensed matter.

[26]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[27]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[28]  Wu,et al.  First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. , 1993, Physical review. B, Condensed matter.

[29]  Wu,et al.  State-tracking first-principles determination of magnetocrystalline anisotropy. , 1993, Physical review letters.

[30]  P. Bruno,et al.  Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. , 1989, Physical review. B, Condensed matter.