The VANDELS survey: a strong correlation between Ly α equivalent width and stellar metallicity at 3 ≤ z ≤ 5

We present the results of a new study investigating the relationship between observed Ly α equivalent width (Wλ(Ly α)) and the metallicity of the ionizing stellar population ( Z⋆) for a sample of 768 star-forming galaxies at 3 ≤ z ≤ 5 drawn from the VANDELS survey. Dividing our sample into quartiles of rest-frame Wλ(Ly α) across the range $-58 \,\rm {\mathring{\rm A}} \lesssim$Wλ(Ly α) $\lesssim 110 \,\rm {\mathring{\rm A}}$, we determine  Z⋆ from full spectral fitting of composite far-ultraviolet spectra and find a clear anticorrelation between Wλ(Ly α) and  Z⋆. Our results indicate that  Z⋆ decreases by a factor ≳ 3 between the lowest Wλ(Ly α) quartile (〈Wλ(Ly α)$\rangle =-18\,\rm {\mathring{\rm A}}$) and the highest Wλ(Ly α) quartile (〈Wλ(Ly α)$\rangle =24\,\rm {\mathring{\rm A}}$). Similarly, galaxies typically defined as Lyman alpha emitters (LAEs; Wλ(Ly α) $\gt 20\,\rm {\mathring{\rm A}}$) are, on average, metal poor with respect to the non-LAE galaxy population (Wλ(Ly α) $\le 20\,\rm {\mathring{\rm A}}$) with  Z⋆non-LAE ≳ 2 ×  Z⋆LAE. Finally, based on the best-fitting stellar models, we estimate that the increasing strength of the stellar ionizing spectrum towards lower  Z⋆ is responsible for ${\simeq}15{-}25{{\ \rm per\ cent}}$ of the observed variation in Wλ(Ly α) across our sample, with the remaining contribution (${\simeq}75{-}85{{\ \rm per\ cent}}$) being due to a decrease in the H i/dust covering fractions in low- Z⋆ galaxies.

[1]  Awad Aubad,et al.  Towards a framework building for social systems modelling , 2020 .

[2]  B. Mobasher,et al.  Searching for z > 6.5 Analogs Near the Peak of Cosmic Star Formation , 2019, The Astrophysical Journal.

[3]  P. Capak,et al.  The redshift evolution of rest-UV spectroscopic properties to z ∼ 5 , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  L. Kewley,et al.  Understanding Galaxy Evolution Through Emission Lines , 2019, Annual Review of Astronomy and Astrophysics.

[5]  A. Strom,et al.  Predicting Lyα Emission from Galaxies via Empirical Markers of Production and Escape in the KBSS , 2019, The Astrophysical Journal.

[6]  B. Garilli,et al.  The VANDELS survey: the stellar metallicities of star-forming galaxies at $\mathbf {2.5\,\, \lt\,\, z\,\, \lt\,\, 5.0}$ , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  B. Garilli,et al.  The VANDELS survey: the role of ISM and galaxy physical properties in the escape of Lyα emission in z ∼ 3.5 star-forming galaxies , 2019, Astronomy & Astrophysics.

[8]  D. Schaerer,et al.  Intense C III] λλ1907,1909 emission from a strong Lyman continuum emitting galaxy , 2018, Astronomy & Astrophysics.

[9]  E. Stanway,et al.  Re-evaluating old stellar populations , 2018, 1805.08784.

[10]  M. Bogosavljevic,et al.  The Keck Lyman Continuum Spectroscopic Survey (KLCS): The Emergent Ionizing Spectrum of Galaxies at z ∼ 3 , 2018, The Astrophysical Journal.

[11]  M. Boquien,et al.  Dust Attenuation Curves in the Local Universe: Demographics and New Laws for Star-forming Galaxies and High-redshift Analogs , 2018, 1804.05850.

[12]  D. Sobral,et al.  Predicting Lyα escape fractions with a simple observable , 2018, Astronomy & Astrophysics.

[13]  V. Wild,et al.  The VANDELS ESO public spectroscopic survey , 2018, 1803.07414.

[14]  V. Wild,et al.  The VANDELS ESO public spectroscopic survey: Observations and first data release , 2018, Astronomy & Astrophysics.

[15]  R. Ellis,et al.  The Redshift Evolution of Rest-UV Spectroscopic Properties in Lyman-break Galaxies at z ∼ 2–4 , 2018, The Astrophysical Journal.

[16]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[17]  A. Strom,et al.  Measuring the Physical Conditions in High-redshift Star-forming Galaxies: Insights from KBSS-MOSFIRE , 2017, The Astrophysical Journal.

[18]  B. Garilli,et al.  The VIMOS Ultra-Deep Survey: evidence for AGN feedback in galaxies with CIII]-λ1908 Å emission 10.8 to 12.5 Gyr ago , 2017, Astronomy & Astrophysics.

[19]  B. Garilli,et al.  Lyα-Lyman continuum connection in 3.5 ≤ z ≤ 4.3 star-forming galaxies from the VUDS survey , 2017, Astronomy & Astrophysics.

[20]  UK.,et al.  Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results , 2017, Publications of the Astronomical Society of Australia.

[21]  O. Fèvre,et al.  The VIMOS Ultra Deep Survey: On the nature, ISM properties, and ionizing spectra of CIII]1909 emitters at z=2-4 , 2017, 1709.03990.

[22]  D. Elbaz,et al.  Jekyll & Hyde: quiescence and extreme obscuration in a pair of massive galaxies 1.5 Gyr after the Big Bang , 2017, 1709.03505.

[23]  H. Rottgering,et al.  Spectroscopic properties of luminous Ly α emitters at z ≈ 6-7 and comparison to the Lyman-break population , 2017, 1706.06591.

[24]  G. Blanc,et al.  A Comprehensive Study of Lyα Emission in the High-redshift Galaxy Population , 2017, 1706.01886.

[25]  S. Charlot,et al.  Ultraviolet spectra of extreme nearby star-forming regions – approaching a local reference sample for JWST , 2017, 1706.00881.

[26]  J. Dunlop,et al.  The First Billion Years project: constraining the dust attenuation law of star-forming galaxies at z ≃ 5 , 2017, 1701.07869.

[27]  C. Leitherer,et al.  Lyα Profile, Dust, and Prediction of Lyα Escape Fraction in Green Pea Galaxies , 2017, 1701.01857.

[28]  S. Ravindranath,et al.  PHOTOIONIZATION MODELS FOR THE SEMI-FORBIDDEN C iii] 1909 EMISSION IN STAR-FORMING GALAXIES , 2016, 1610.03778.

[29]  D. Schaerer,et al.  Lyman-α spectral properties of five newly discovered Lyman continuum emitters , 2016, 1609.03477.

[30]  A. Strom,et al.  THE REST-FRAME OPTICAL SPECTROSCOPIC PROPERTIES OF LYα-EMITTERS AT z ∼ 2.5: THE PHYSICAL ORIGINS OF STRONG LYα EMISSION , 2016, 1608.07280.

[31]  R. Bouwens,et al.  Lyα and C iii] emission in z = 7–9 Galaxies: accelerated reionization around luminous star-forming systems? , 2016, 1606.01304.

[32]  A. Strom,et al.  RECONCILING THE STELLAR AND NEBULAR SPECTRA OF HIGH-REDSHIFT GALAXIES , 2016, 1605.07186.

[33]  A. Strom,et al.  A HIGH FRACTION OF Lyα EMITTERS AMONG GALAXIES WITH EXTREME EMISSION LINE RATIOS AT z ∼ 2 , 2016, 1605.04919.

[34]  L. Kewley,et al.  Changing physical conditions in star-forming galaxies between redshifts 0 < z < 4: [O iii]/H β evolution , 2016, 1605.04228.

[35]  S. Finkelstein,et al.  HOW LYMAN ALPHA EMISSION DEPENDS ON GALAXY STELLAR MASS , 2016, 1604.03113.

[36]  E. Stanway,et al.  Stellar population effects on the inferred photon density at reionization , 2015, 1511.03268.

[37]  H. Dahle,et al.  C III] EMISSION IN STAR-FORMING GALAXIES NEAR AND FAR , 2015, 1510.02542.

[38]  A. Coil,et al.  THE MOSDEF SURVEY: ELECTRON DENSITY AND IONIZATION PARAMETER AT z ∼ 2.3 , 2015, 1509.03636.

[39]  A. Strom,et al.  THE SPECTROSCOPIC PROPERTIES OF Lyα-EMITTERS AT z ∼ 2.7: ESCAPING GAS AND PHOTONS FROM FAINT GALAXIES , 2015, 1506.08205.

[40]  P. W. Wang,et al.  The VIMOS Ultra Deep Survey: Lyα emission and stellar populations of star-forming galaxies at 2 < z < 2.5 , 2015, 1503.01753.

[41]  Edinburgh,et al.  COSMIC REIONIZATION AND EARLY STAR-FORMING GALAXIES: A JOINT ANALYSIS OF NEW CONSTRAINTS FROM PLANCK AND THE HUBBLE SPACE TELESCOPE , 2015, 1502.02024.

[42]  A. Strom,et al.  THE Lyα PROPERTIES OF FAINT GALAXIES AT z ∼ 2–3 WITH SYSTEMIC REDSHIFTS AND VELOCITY DISPERSIONS FROM KECK-MOSFIRE , 2014, 1408.3638.

[43]  B. Milvang-Jensen,et al.  Ultraviolet emission lines in young low-mass galaxies at z ≃ 2: physical properties and implications for studies at z > 7 , 2014, 1408.1420.

[44]  M. Dijkstra Lyα Emitting Galaxies as a Probe of Reionisation , 2014, Publications of the Astronomical Society of Australia.

[45]  Maximilian Fabricius,et al.  THE HETDEX PILOT SURVEY. V. THE PHYSICAL ORIGIN OF Lyα EMITTERS PROBED BY NEAR-INFRARED SPECTROSCOPY , 2014, 1406.4503.

[46]  J. Dunlop,et al.  The mass–metallicity–star formation rate relation at $\boldsymbol {z \gtrsim 2}$ with 3D Hubble Space Telescope , 2014 .

[47]  Max Pettini,et al.  STRONG NEBULAR LINE RATIOS IN THE SPECTRA of z ∼ 2–3 STAR FORMING GALAXIES: FIRST RESULTS FROM KBSS-MOSFIRE , 2014, 1405.5473.

[48]  P. W. Wang,et al.  The VIMOS Ultra-Deep Survey (VUDS): fast increase in the fraction of strong Lyman-α emitters from z = 2 to z = 6 , 2014, 1403.3693.

[49]  A. Fontana,et al.  Constraints on the star-formation rate of z ~ 3 LBGs with measured metallicity in the CANDELS GOODS-South field , 2014, 1403.0743.

[50]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[51]  J. Dunlop,et al.  The colour distribution of galaxies at redshift five , 2013, 1312.4975.

[52]  H Germany,et al.  On the evolution of the cosmic ionizing background , 2013, 1312.0615.

[53]  J. Dunlop,et al.  The Mass-Metallicity-SFR Relation at z >~ 2 with 3D-HST , 2013, 1310.0816.

[54]  M. Ouchi,et al.  Ionization state of inter-stellar medium in galaxies: evolution, SFR-M * -Z dependence, and ionizing photon escape , 2013, 1309.0207.

[55]  E. C. Herenz,et al.  THE LYMAN ALPHA REFERENCE SAMPLE. II. HUBBLE SPACE TELESCOPE IMAGING RESULTS, INTEGRATED PROPERTIES, AND TRENDS , 2013, 1308.6578.

[56]  L. Kewley,et al.  THEORETICAL EVOLUTION OF OPTICAL STRONG LINES ACROSS COSMIC TIME , 2013, 1307.0508.

[57]  Brian Siana,et al.  A REFINED ESTIMATE OF THE IONIZING EMISSIVITY FROM GALAXIES AT z ≃ 3: SPECTROSCOPIC FOLLOW-UP IN THE SSA22a FIELD , 2012, 1210.2393.

[58]  K. Shimasaku,et al.  FIRST SPECTROSCOPIC EVIDENCE FOR HIGH IONIZATION STATE AND LOW OXYGEN ABUNDANCE IN Lyα EMITTERS, , 2012, 1208.3260.

[59]  David R. Law,et al.  A HST/WFC3-IR MORPHOLOGICAL SURVEY OF GALAXIES AT z = 1.5–3.6. II. THE RELATION BETWEEN MORPHOLOGY AND GAS-PHASE KINEMATICS , 2012, 1206.6889.

[60]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[61]  David Schiminovich,et al.  EXTREME FEEDBACK AND THE EPOCH OF REIONIZATION: CLUES IN THE LOCAL UNIVERSE , 2011, 1101.4219.

[62]  Robin Ciardullo,et al.  THE HETDEX PILOT SURVEY. III. THE LOW METALLICITIES OF HIGH-REDSHIFT Lyα GALAXIES , 2010, 1011.0431.

[63]  C. Leitherer,et al.  A LIBRARY OF THEORETICAL ULTRAVIOLET SPECTRA OF MASSIVE, HOT STARS FOR EVOLUTIONARY SYNTHESIS , 2010, 1006.5624.

[64]  C. Steidel,et al.  PHYSICAL CONDITIONS IN A YOUNG, UNREDDENED, LOW-METALLICITY GALAXY AT HIGH REDSHIFT , 2010, 1006.5456.

[65]  A. Fontana,et al.  Physical and morphological properties of z ~ 3 Lyman break galaxies: dependence on Lyα line emission , 2010, 1002.2068.

[66]  C. Steidel,et al.  THE RELATIONSHIP BETWEEN STELLAR POPULATIONS AND Lyα EMISSION IN LYMAN BREAK GALAXIES , 2009, 0911.2000.

[67]  V. Buat,et al.  Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample , 2009, 0909.5439.

[68]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[69]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[70]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[71]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[72]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[73]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[74]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[75]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[76]  A. Songaila The Evolution of the Intergalactic Medium Transmission to Redshift 6 , 2004, astro-ph/0402347.

[77]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[78]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[79]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[80]  D. Schaerer The transition from Population III to normal galaxies: Lyα and He II emission and the ionising properties of high redshift starburst galaxies , 2002, astro-ph/0210462.

[81]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[82]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[83]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[84]  S. M. Fall,et al.  Lyman-Alpha Emission from Galaxies , 1993 .

[85]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae , 1976 .

[86]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[87]  E. C. Herenz,et al.  The Lyman alpha Reference Sample: II. HST imaging results, integrated properties and trends , 2014 .